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Supplemental Material

This article introduces PyKonal: a new open-source Python package for computing
travel times and tracing ray paths in 2D or 3D heterogeneous media using the fast
marching method for solving the eikonal equation in spherical and Cartesian coordi-
nates. Compiled with the Cython compiler framework, PyKonal offers a Python appli-
cation program interface (API) with execution speeds comparable to C or Fortran codes.
Designed to be accurate, stable, fast, general, extensible, and easy to use, PyKonal
offers low- and high-level API functions for full control and convenience, respectively.
A scale-independent implementation allows problems to be solved at micro, local,
regional, and global scales, and precision can be improved over existing open-source
codes by combining different coordinate systems. The resulting code makes state-of-
the-art computational capabilities accessible to novice programmers and is efficient
enough for modern research problems in seismology.

Introduction
How long do seismic waves generated at one point take to
reach another? What path does the energy take to get there?
These basic questions are key for seismologists’ ability to locate
earthquakes, image subsurface structure, and pursue many
other fundamental studies. The vast literature documenting
different approaches to answering these questions dwarfs
the number of corresponding practical tools freely available
to seismologists. Here, we present PyKonal: a new open-source
Python package for computing travel times and tracing ray
paths using the fast marching method (FMM) for solving
the eikonal equation.

Most numerical approaches for computing travel times and
ray paths can be classified into one of two main categories: ray-
based methods, which solve the kinematic ray equations; and
grid-based methods, which usually solve the eikonal equation
using finite differences or use Dijkstra-like network algorithms
(Dijkstra, 1959) to determine the shortest path between two
points. Ray-based methods compute travel times along indi-
vidual ray paths and provide no explicit information about
travel times along alternative ray paths. They are favorable
for their speed when the number of ray paths that the user
is interested in is small, but they suffer from inaccuracy and

instability in regions with significant velocity heterogeneity.
Grid-based methods, on the other hand, compute the entire
travel-time field—that is, from the source to every point on
a grid—and then use the gradient of the travel-time field to
determine individual ray paths. While less efficient for deter-
mining individual ray paths, they are preferable for their sta-
bility and accuracy in complex media and are more efficient
when travel times are needed at a large number of points.

The kinematic ray equations can be formulated as an initial-
value problem, which can be solved using shooting methods
(e.g., White, 1989), or as a boundary-value problem, which
can be solved using bending methods (e.g., Julian and
Gubbins, 1977; Thurber and Ellsworth, 1980; Um and
Thurber, 1987). See Rawlinson et al. (2008) for a thorough
review of ray- and grid-based methods.

A plethora of grid-based methods for solving the eikonal
equation have been proposed since the late 1980s, each with
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different computational complexity and stability properties,
originating primarily in the fields of computational mathemat-
ics and physics. Most grid-based eikonal solvers implement the
concept of a narrowband computational front (a limited region
of the computational domain for which information is strategi-
cally propagated from regions where the solution is known to
regions where it is unknown). Sweeping methods are one class
of methods, stemming from the work of Zhao (2004), that omit
the concept of a narrowband, which, despite their computa-
tional efficiency, find little use in seismological applications
because of their instability in heterogeneous media.

Grid-based eikonal solvers implementing a narrowband
generally use either an expanding box or the expanding wave-
front as the computational front. Reshef and Kosloff (1986)
were probably the first to propose a grid-based method for
solving the eikonal equation in seismological applications,
and Vidale (1988) contributed significantly to the expand-
ing-box formulation. The most severe limitation of Vidale’s
method is that it breaches the causality of the eikonal equation
under certain conditions and is thus unstable. A number of
efforts have been directed at resolving this instability and
improving the efficiency and generality of that expanding-
box formulation (e.g., Vidale, 1990; Podvin and Lecomte,
1991; van Trier and Symes, 1991; Schneider et al., 1992;
Hole and Zelt, 1995; Afnimar and Koketsu, 2000). High-order
essentially nonoscillatory (ENO) finite-difference schemes
(Harten and Osher, 1987) and their weighted ENO extensions
(Liu et al., 1994) have been implemented in the expanding-box
framework for seismological applications (e.g., Kim and Cook,
1999; Qian and Symes, 2002a,b; Buske and Kastner, 2004);
however the postprocessing proposed to overcome the insta-
bility inherent in expanding-box methods (e.g., Kim and
Cook, 1999) increases algorithmic complexity.

Qin et al. (1992) were apparently the first to replace the
expanding box with a computational front that conforms
approximately to the shape of the advancing wavefront.
This expanding-wavefront formulation always honors the cau-
sality of the eikonal equation, and is thus unconditionally sta-
ble, but does so at the cost of increased computational expense
because a sorted list of narrowband values must always be
maintained. In an independent effort, Sethian (1996) com-
bined the stability of the expanding-wavefront formulation
with the computational efficiency of heap-sort technology to
develop the FMM, which simultaneously offers unconditional
stability and computational efficiency. Sethian and Popovici
(1999) introduced the FMM to the seismological community
and Rawlinson and Sambridge (2004a) generalized the method
for multiple reflection and transmission phases.

Although previous work established a solid practical foun-
dation for estimating travel times and ray paths used to
advance the understanding of the Earth’s interior, improving
precision over and providing greater flexibility than existing
software can lead to better results. We implement the FMM

here, because it is relatively easy to code (reducing the likeli-
hood of bugs), unconditionally stable, and computationally
efficient. The presented new Python package, PyKonal, can
improve on various seismic imaging applications. PyKonal
can solve the eikonal equation in two or three dimensions
using Cartesian or spherical coordinates and combinations
thereof. With possible applications to locating earthquakes,
performing seismic tomography, computing ray-path param-
eters, and Kirchhoff depth migration, PyKonal is designed to
be accurate, stable, fast, general, extensible, and easy to use.

In the following sections, we outline the theory and imple-
mented methodology (see the Method section), present the
performance of the implementation with respect to the design
criteria mentioned earlier (see the Results section), and com-
pare with existing tools and discuss potential extensions and
use cases (see the Discussion section). Concluding remarks,
including discussion of ongoing work, are finally offered
(see the Conclusions section).

Method
In this section, we review the derivation of the eikonal equation
following Rawlinson et al. (2008), state the problem solved by
the FMM, and describe how we implement it.

Deriving the eikonal equation
The homogeneous scalar wave equation

EQ-TARGET;temp:intralink-;df1;308;405∇2ψ�r; t� � 1
v2�r�

∂2ψ�r; t�
∂t2

; �1�

is a second-order linear partial differential equation in space
and time with general solutions of the following form:

EQ-TARGET;temp:intralink-;df2;308;328ψ�r; t� � A�r�e�iω�τ�r�−t�; �2�

in which ψ, r, t, v, A, ω, and τ represent the wavefunction, posi-
tion vector, time, wave velocity, wave amplitude, angular fre-
quency, and the spatially dependent travel time, respectively.

Substituting equation (2) into equation (1) gives

EQ-TARGET;temp:intralink-;df3;308;236�∇2A − ω2j∇τj2 � iω�2∇A · ∇τ � A∇2τ��ψ � −
1
v2

ω2ψ; �3�

in which the centered dot represents the dot product operator.
After factoring out ψ and separating the real and imaginary
parts, equation (3) yields a pair of equations:

EQ-TARGET;temp:intralink-;df4;308;146∇2A − ω2j∇τj2 � −
ω2

v2
; �4�

and

EQ-TARGET;temp:intralink-;df5;308;842∇A ·∇τ � A∇2τ � 0: �5�
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Dividing equation (4) by ω2 and taking the high-frequency
limit ω → ∞ gives the eikonal equation:

EQ-TARGET;temp:intralink-;df6;53;717j∇τj2 � 1
v2

: �6�

The high-frequency approximation made to obtain equa-
tion (6) is conventionally held to be valid when the wavelength
of the propagating wave is much shorter than the scale of
velocity structure heterogeneity, although discontinuities are
permitted (Rawlinson et al., 2008).

Expression (5) is called the transport equation and can be
used to compute the amplitude of the propagating wave as a
function of space if the travel-time field is known (e.g., Qian
and Symes, 2002a; Buske and Kastner, 2004).

Statement of the problem
Given the velocity field, v�r�, we aim to determine the
travel-time field, τ�r�, by solving equation (6) under various
boundary conditions.

Consider a parametric surface in R3, Γ�t�, representing a
zero-phase wavefront that propagates perpendicular to itself
with velocity v assumed to be a strictly positive function of
space, and let τ�r� be the time it takes to reach a point with
position vector r from an arbitrary boundary value,
Γ�t � 0�. The eikonal equation (6) approximates the relation-
ship between τ�r� and v�r� at high frequencies, and Γ�t� is the
surface defining the wavefront at time t—that is, the set of r
such that τ�r� � t. The evolution of Γ�t� can be tracked by
solving equation (6) for τ�r�, given v�r� and appropriate boun-
dary conditions. The problem is to solve equation (6) for τ�r�,
given v�r� and Γ�t � 0�.

Solution
Sethian (1996) developed an efficient numerical method—the
FMM—for approximating a solution to equation (6), subject to
an entropy condition: the wavefront can only cross each point
once. Imposing this condition implies that the solution obtained
comprises only first arrivals; the wavefront propagates along the
minimal path in terms of time between any two points.

The next section presents the FMM as implemented herein.
See the original paper by Sethian (1996) for a detailed deriva-
tion and proof that the method produces a valid solution of the
eikonal equation.

The FMM
Evaluating equation (6) at a discrete number of points gives

EQ-TARGET;temp:intralink-;df7;53;144j�∇τ�ijkj2 �
1
v2ijk

; �7�

in which

EQ-TARGET;temp:intralink-;df8;53;83f ijk ≡ f �iΔξ1; jΔξ2; kΔξ3�; �8�

with ijk being indexes belonging to the set of integers, and Δξ1,
Δξ2, andΔξ3 being discretization intervals along the ξ1, ξ2, and
ξ3 axes of a general orthogonal coordinate system spanningR3,
respectively.

To satisfy the entropy condition imposed on the approxi-
mate solution to equation (6) obtained by the FMM, the gra-
dient operator must be approximated in such a way that each
component of the travel-time gradient is always nonnegative.
Doing so ensures that information always flows in the same
direction as the propagating first-arrival wavefront. Different
entropy-satisfying approximations have been proposed (e.g.,
Osher and Sethian, 1988; Rouy and Tourin, 1992) and, as in
Sethian and Popovici (1999), we choose the scheme from Rouy
and Tourin (1992):

EQ-TARGET;temp:intralink-;df9;320;561j�∇τ�ijkj ≈
X3
a�1

max

�
1
hξa

D−ξa
ijk ;−

1
hξa

D�ξa
ijk ; 0

�
; �9�

in which hξa represents the scale factor along the ξa axis for the
used coordinate system, and D−ξa

ijk and D�ξa
ijk represent, respec-

tively, backward and forward finite-difference approximations
to the derivative of τ at ijk along the ξa axis. Substituting equa-
tion (9) into equation (7) gives

EQ-TARGET;temp:intralink-;df10;320;445

X3
a�1

max

�
1
hξa

D−ξa
ijk ;−

1
hξa

D�ξa
ijk ; 0

�
2
−

1
v2ijk

≈ 0: �10�

Equation (10) has an upwind difference structure—a cau-
sality relationship implying that the value of τijk is fully deter-
mined by neighboring values, τ lmn, such that τ lmn < τijk. In
other words, information propagates in one direction—from
lesser values of τ to greater—and unknown values of τ can
be derived from neighboring known values by solving equa-
tion (10). Thus, starting with known values τijk � 0, the
domain of known values can be expanded until it includes
all values by iteratively solving equation (10). This amounts
to solving a quadratic equation in τijk after expansion. The effi-
ciency of the FMM rests on carefully choosing the order in
which to update the unknown values, as presented in the fol-
lowing paragraph and in Figure 1.

Initialize three empty sets: “Known,” “Trial,” and
“Unknown.” Assign all nodes to Unknown. Set τijk � 0 for
all nodes on the initial wavefront and transfer them from
Unknown to Trial. Observe that the upwind structure of equa-
tion (10) implies that the node in Trial with the smallest value
of τ cannot change (if multiple values are equally the smallest,
choose one at random—this will not affect the solution); trans-
fer it from Trial to Known and temporarily label it “Active.”
Update the value of each neighbor of Active that is not in
Known using values in Known to solve equation (10) and
transfer any of them that are in Unknown to Trial.
Iteratively, transfer the node in Trial with the smallest value
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of τ to Known, and update its neighbors until all nodes are
in Known.

Any sorting algorithm can be used to determine the node in
Trial with the smallest value of τ. Following Sethian (1996), we
use a heap-sort algorithm, which has O�N logN� worst-case
performance in which N is the total number of grid nodes.
In practice, the computational efficiency of the FMM is nearly
linear in N .

Coordinate systems
The method has been presented in a general coordinate system
thus far, but a specific choice must be made in practice, and
each coordinate system has strengths and weaknesses, which
are illustrated in the Results section. Choosing a particular
set of coordinates is tantamount to defining the scale factors,
hξn , in equation (10). In Cartesian coordinates, the scale factors
are hx � hy � hz � 1, and in spherical coordinates they are
hρ � 1, hθ � ρ, and hφ � ρ sin θ, in which the International
Organization for Standardization’s convention is adopted
for spherical coordinates (Fig. 2).

Spherical coordinates are ideal for tracking spherical wave-
fronts, whereas Cartesian coordinates are ideal for tracking pla-
nar wavefronts (see the Results section). Seismologists often treat
sources of seismic energy as point sources, making spherical
coordinates suitable at small and intermediate distances.
Wavefronts from sufficiently distant sources are often assumed
to be planar, for which Cartesian coordinates are ideal. When
wavefronts must be tracked over great distances and the

sphericity of the Earth must be accounted for, spherical coordi-
nates are again naturally suited to the problem. It is often desir-
able to combine different coordinate systems when solving a
particular problem.

Implementing the FMM solution of the eikonal equation in
a general coordinate system makes integrating different sys-
tems easy. To combine different coordinate systems, we first
solve the eikonal equation in one, then map the solution into
a second, and solve the eikonal equation in the remaining
unknown region. This procedure can be iterated ad infinitum,
but combining two or three coordinate systems is likely suffi-
cient for most problems in seismology.

The unconditional stability of the FMM owes to a proper
entropy-condition-satisfying approximation for the gradient
and has only been proven in the case of first-order-accurate
finite-difference operators. Strictly speaking, transitioning
between coordinate systems may destabilize the FMM by vio-
lating the entropy condition. Transitioning from the first coor-
dinate system to the second assumes that the wavefront does
not propagate from the second back into the first anywhere.
This is likely of little concern in the vast majority of practical
use cases; however, users should be aware of this aspect and use
appropriate caution.

One further caveat that users should be aware of is the sin-
gularity in the gradient operator at the origin of spherical coor-
dinate systems. The eikonal equation is unsolvable there,
because the gradient operator is undefined. Thus, PyKonal will
raise an error if the user attempts to place a node at the origin
of a spherical grid. Grid nodes can be placed sufficiently close

Figure 1. Essential elements of the fast marching method algo-
rithm for solving the eikonal equation (6) implemented by
PyKonal.

Figure 2. International Organization for Standardization coordi-
nate-system convention adopted for spherical coordinates, in
which x, y, and z are standard Cartesian coordinates, and ρ, θ,
and φ are radial, polar, and azimuthal coordinates, respectively,
with ρ ∈ �0;∞�, θ ∈ �0; π�, and ϕ ∈ �0; 2π�.
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to the origin that this has little effect in practice, but any wave-
front propagating through the origin will be distorted. Future
updates to PyKonal may include implementing an unstruc-
tured-mesh update scheme (Sethian, 1999) at the origin of
spherical coordinate systems to mitigate the singularity there.

Order of the finite-difference operators
The accuracy of the FMM depends partially on the order of the
finite-difference operators used for which generic operators are
specified in equation (10). The simplest but most inaccurate
scheme uses only first-order operators:

EQ-TARGET;temp:intralink-;df11;53;600D−ξ1
ijk � D

−ξ11
ijk ≡

τijk − τi−1jk
Δξ1

; �11�

EQ-TARGET;temp:intralink-;df12;53;556D�ξ1
ijk � D

�ξ11
ijk ≡

τi�1jk − τijk
Δξ1

; �12�

and similar definitions in ξ2 and ξ3, in which ξnm indicates an
nth-order finite-difference operator along the ξm axis (e.g.,
D
�ξ11
ijk and D

−ξ23
ijk represent the finite-difference approximation

of the derivative of τ computed using a first-order forward
operator along the ξ1 axis and a second-order backward oper-
ator along the ξ3 axis, respectively). More accurate approxima-
tions can be obtained using higher-order operators, for
example, second-order operators:

EQ-TARGET;temp:intralink-;df13;53;410D−ξ1
ijk � D

−ξ21
ijk ≡

τi�2jk − 4τi�1jk � 3τijk
2Δξ1

; �13�

EQ-TARGET;temp:intralink-;df14;53;362D�ξ1
ijk � D

�ξ21
ijk ≡ −

τi−2jk − 4τi−1jk � 3τijk
2Δξ1

; �14�

and similar definitions in ξ2 and ξ3.
The causality of equation (10) implies that using higher-

order operators is only permissible when the travel-time field
at all nodes involved in an update is monotonically decreasing
away from the node being updated. For example, a second-
order update along the x axis using a backward finite-differ-
ence operator is only permissible when τi−2jk ≤ τi−1jk ≤ τijk.
As in Sethian (1999), we implement second-order operators
whenever known values satisfy the causality condition and
first-order operators otherwise, which means that the update
scheme is of mixed order.

Raytracing
Energy propagates perpendicular to the wavefronts in isotropic
media, so the gradient of the travel-time field is always tangent
to the ray path between two points. Thus, the ray path can be
expressed as a parametric curve, R�s�, satisfying

EQ-TARGET;temp:intralink-;df15;53;90

dR�s�
ds

� ∇τ; �15�

in which s represents distance along the curve. Equation (15) is
a first-order ordinary differential equation, which can be
solved by integrating over ds using the Runge–Kutta method.
PyKonal implements a simple first-order Runge–Kutta method
(Euler’s method).

Because the source location necessarily coincides with the
global minimum of the travel-time field, the gradient of the
travel time vanishes there, and we cannot integrate equa-
tion (15) from source to receiver. Instead, we integrate equa-
tion (15) in the reverse direction, from receiver to source,
which means that we find the path of steepest descent (in terms
of travel time) between the receiver and source.

The fact that the global minimum of the travel-time field
coincides with the source location presents a convenient con-
dition for stopping integration of equation (15). Because we are
following the path of steepest travel-time descent, the travel
time at each point along the ray path should be lower than
at every point that precedes it. Thus, the ray will satisfy
τ�R�s1�� < τ�R�s2�� for all s1 > s2. If the ray overshoots the
source location, it will start traveling “uphill” and will violate
this condition. Thus, we stop integrating as soon as the ray
encounters a point associated with a travel-time value exceed-
ing that of the immediately preceding point.

Results
We now demonstrate that five of our six goals in building this
tool are achieved: The code is accurate, stable, fast, general, and
extensible. Users may judge whether our tool satisfies our sixth
goal: easy to use.

Accuracy
Consider the trivial case of waves emanating from a point
source with v � 1 km=s everywhere (Fig. 3). Spherical wave-
fronts expand outward from the source, reaching a given point
after an amount of time that is in direct proportion to the dis-
tance from the source. Comparing this analytical solution to a
numerical solution computed using Cartesian coordinates
reveals numerical anisotropy. As discussed by Alkhalifah
and Fomel (2001), errors are the greatest in the near-source
region—where wavefront curvature is large relative to the node
spacing—and in regions where the wavefront is oblique to the
coordinate axes. In spherical coordinates, however, the
numerical solution is exact up to computational precision,
because the radial axis is always orthogonal to the wavefront
and the partial derivative of the travel-time field with respect to
azimuth (and polar angle in 3D) is always zero. This simple test
suggests that, even for more complicated velocity fields, spheri-
cal coordinates centered on a point source are more accurate
than Cartesian coordinates in the near-field region where
wavefront curvature is high.

If the point source in the previous example is replaced by a
line (in the 2D case) or a plane (in the 3D case) source, the
opposite holds and Cartesian coordinates are more accurate
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(Fig. 4). In this case, the y axis is always orthogonal to the
wavefronts leading to an accurate solution, whereas spherical
coordinates suffer from numerical anisotropy.

Much work has been devoted to reducing numerical
anisotropy introduced by finite-difference schemes, particu-
larly in the field of hyperbolic partial differential equations
(see Sescu, 2015, for a thorough review). Adapting such
approaches to our context seems plausible; however, the pre-
ceding two examples elucidate an important feature of the
FMM for solving the eikonal equation: judicious design of
the computational grid can yield highly accurate solutions
while effectively minimizing numerical anisotropy. Because
numerical anisotropy can be effectively reduced in this man-
ner, we avoid endeavoring here to implement complicated
finite-difference schemes to further reduce it.

Stability
To be useful for solving modern problems in seismology, any
raytracing tool must be numerically stable in highly complex
velocity structures. The FMM is unconditionally stable
(Sethian and Popovici, 1999)—meaning that solutions con-
verge to a stable solution that is consistent with the exact sol-
ution in the limit that the node intervals go to zero—making it
well suited to any problem in seismology for which the eikonal
equation is valid. To demonstrate this convergent behavior, we
consider a point source at the surface of the Marmousi2 veloc-
ity model (Versteeg, 1994)—a standard model in exploration
seismology comprising complex structures with lateral and

vertical gradients, discontinuities, inversions, folded layers,
pinch outs, and lenses (Fig. 5). Solutions converge toward a
stable solution as the node intervals are successively halved.
Unconditional stability results from proper choice of an
entropy-satisfying gradient approximation (expression 9),
and although it has only been proven in the case of first-order
accurate finite-difference operators, these results suggest that
the algorithm remains stable with higher-order operators for
complex practical use cases.

The unconditional stability of the FMM implies that ray
paths obtained by integrating equation (15) can be made arbi-
trarily accurate by making the computational grid sufficiently
dense (Fig. 6). Errors accumulate along the integration path, so
they are least at the beginning of the integration path (near the
receiver) and greatest at the end (near the source). This error
accumulation is exacerbated by relatively large travel-time
errors in the source region. In addition, the criteria used for
terminating integration permits inaccurate ray paths to over-
shoot the source location; however, the amount of overshoot
decreases as grid density increases.

Speed
Having established the accuracy of our FMM implementation
for the simplest cases (see the Accuracy section) and its stabil-
ity in the complex case of the Marmousi2 model (see the
Stability section), we turn to its execution speed. We consider
a suite of 3D problems of various sizes with a random velocity
model and a source at a corner of the grid. The execution

Figure 3. (a,b) Travel-time fields and (c,d) absolute errors for a
point source at �x; y� � �0; 0� computed in (a,c) Cartesian
coordinates and (b,d) spherical coordinates. (b,d) Portions of the
plots are blank because the radial axis of the spherical grid used
extends to a maximum of 25 km.

Figure 4. (a,b) Travel-time fields and (c,d) absolute errors for a line
source at y � 0 computed in (a,c) Cartesian coordinates and (b,d)
spherical coordinates. (b,d) Portions of the plots are blank
because the radial axis of the spherical grid used extends to a
maximum of 25 km.
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timescales nearly linearly with grid size (Table 1) making large
problems (>106 nodes) tractable and small problems (<106

nodes) trivial.

Generality
In the Stability section, we demonstrated that our implemen-
tation of the FMM in Cartesian coordinates is applicable at
local scales for which the curvature of the Earth is negligible.
Here, we demonstrate that our implementation in spherical
coordinates works well at global scales and the property of sta-
ble convergence holds. It is the exact same code base that solves
the eikonal equation in both Cartesian and spherical coordi-
nates, eliminating the need for multiple implementations—
only the scaling factors in equation (10) change between oper-
ating modes, and this is done automatically at run time.

We repeat the exercise from Figure 5, but this time we use a
2D slice from the Li et al. (2008) global mantle P-wave model
(MITP2008) in spherical coordinates. As in the case of
Cartesian coordinates, the travel-time field converges to a sta-
ble solution as the node intervals decrease (Fig. 7).

Extensibility
Tracking secondary phases. The FMM is limited to
tracking first arrivals, but secondary reflected arrivals contain
much useful information for seismologists. These secondary ar-
rivals can be tracked using the multistage approach developed

by Rawlinson and Sambridge (2004b) and extended to 3D
spherical coordinates by de Kool et al. (2006). We now show
that our code can readily be extended to implement such a
multistage approach for tracking secondary arrivals.

To show this, we track waves reflected from the lower boun-
dary of a rectangular section (Fig. 8). First, we compute the

Figure 6. Rays traced through a medium with linear velocity
gradient v�z� � �4:5� 0:25z��km=s� using different grid den-
sities. The densest grid contains 4096 and 1024 nodes in the x
and y directions, respectively, and the grid density is iteratively
decimated by a factor of 2, in which d represents the decimation
factor relative to the densest grid (e.g., the grid for d � 8 has
4096=8 � 512 and 1024=8 � 128 nodes in the x and y direc-
tions, respectively). Decimation factors corresponding to each ray
are given in the legend at right. The analytical solution for the ray
path is shown as a dashed black line. Black stars and inverted
black triangles represent the source and receiver locations,
respectively. (a–c) Zoomed in regions (22× magnification; axes
ticks are at 0.2 km intervals) near the (a) source, (b) midpoint, and
(c) receiver; (d) the entire ray path.

TABLE 1
Execution Time for Problems of Various Grid Sizes

Grid Size Number of Nodes Execution Time (s)

2 × 2 × 2 23 1:4 × 10−4

4 × 4 × 4 26 1:1 × 10−4

8 × 8 × 8 29 6:5 × 10−4

16 × 16 × 16 212 2:8 × 10−3

32 × 32 × 32 215 2:8 × 10−2

64 × 64 × 64 218 2:5 × 10−1

128 × 128 × 128 221 2.6

256 × 256 × 256 224 3:7 × 101

512 × 512 × 512 227 4:4 × 102

Simulations were run on a Dell Optiplex 9020 workstation with a quad-core 3.4 GHz
Intel Core i7-4770 CPU.

Figure 5. (a) The Marmousi2 velocity model; (b) travel-time field
computed on a Cartesian grid with 6801 and 1401 nodes
along the x and y axes, respectively, for a source located at the
top left corner �x; y� � �0; 0�. Black dashed lines indicate
wavefronts at 0.25 s intervals. (c–i) Difference, Δt, at coincident
nodes between travel-time field in (b) and travel-time field
computed on a grid decimated by a factor, d, specified in the top
left corner of each plot.
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downgoing travel-time field from the source to all points.
Then, we reinitialize the travel-time field and set the travel time
at each node along the bottom edge to the travel time of the
incident downgoing wave. The upgoing reflected waves are
then tracked to all points. This relatively simple example serves
as a proof of concept: PyKonal can be extended to solve more
complex problems than tracking first arrivals. Tracking
multiple reflections and refractions from complex undulating
surfaces, however, requires additional functionality that
PyKonal does not currently offer. FM3D (Rawlinson and
Sambridge, 2004b; de Kool et al., 2006) is a more flexible
and mature software package with respect to this class of
problems.

Locating earthquakes. Seismic analysts locate earth-
quakes on a daily basis and typically use 1D velocity models
to represent the 3D Earth structure, because simple algorithms

that can be incorporated into relevant workflows are not avail-
able. Research seismologists are left to determine more accu-
rate locations that account for 3D structure, which could be
obtained in the first place with the necessary tools. As a final
demonstration, we show that it is straightforward to extend the
PyKonal algorithm to locate earthquakes.

To show this, we relocate a set of 148 well-constrained
events in southern California, taken from the catalog of
White et al. (2019), using a simple grid search followed by dif-
ferential evolution optimization (Storn and Price, 1997) in a
small neighborhood around the optimal grid point.
Differential evolution is a genetic algorithm that performs a
stochastic global search to optimize complex multivariate func-
tions. Each of the chosen events is in the focus region of the
study by White et al. (2019), is associated with at least 128
arrivals with root mean square (rms) residual <1 s, and was
located using the NonLinLoc software package (Lomax et al.,
2009) for probabilistic nonlinear earthquake location in 3D
heterogeneous Earth models and a 3D velocity model derived
from the results of Fang et al. (2016).

To relocate events, we use the source–receiver reciprocity
and compute travel-time fields for each receiver by treating
them as sources. We use the same velocity model as in
White et al. (2019) and a spherical grid with 64, 128, and
128 nodes in the radial, polar, and azimuthal directions,
respectively. The origin time is estimated for each node-arrival
pair by subtracting the node-to-station travel time from the
observed arrival time, and the node that minimizes the stan-
dard deviation of origin time estimates for all arrivals provides
an initial estimate of the hypocenter location. The average of

Figure 7. (a) A 2D slice of the MITP2008 velocity model shown as
percent P-wave deviation from the ak135 reference model
(Kennett et al., 1995). (b) Travel-time field computed on a
spherical grid with 1024 and 2048 nodes along the ρ and ϕ axes,
respectively, for a source located at 1444 km depth. The white
star with black outline and black dashed lines indicate the source
location and wavefronts at 20 s intervals, respectively. (c–i)
Difference, Δt, at coincident nodes between travel-time field in
(b) and travel-time field computed on a grid decimated by a
factor, d, specified in the top left corner of each plot.

Figure 8. Reflected waves propagating through a velocity model
with random velocity perturbations. The white star with black
outline indicates the source location. (a,b) Black dashed lines
represent wavefronts at 0.25 s intervals for (a) downgoing
wavefronts and (b) wavefronts reflected by the lower boundary
near 12 km depth. (c) Black lines represent ray paths reflected by
the lower boundary and arriving at 5 km intervals at the surface.
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the origin times estimated for the best-fitting node provides an
initial origin time value. The differential evolution algorithm
implemented by the scipy.optimize.differential_evolution
function in the SciPy Python package (Jones et al., 2001) then
refines this initial location by searching a small region around
the initial location for the value that minimizes the rms
between observed and synthetic arrival times.

Relocated events are consistent with NonLinLoc locations
(Fig. 9), but have lower rms in all 148 cases suggesting that
this rudimentary algorithm consistently finds small adjust-
ments that better fit the data. More sophisticated location algo-
rithms can be designed using PyKonal to solve the forward
problem.

Discussion
Comparing with FM3D
PyKonal builds on the foundation laid by FM3D (de Kool et al.,
2006) in four important ways: (a) it can improve accuracy
using hybrid coordinate systems; (b) it accounts for the

azimuthal periodicity inherent in spherical coordinates to
allow wavefronts to propagate across the ϕ � 0 plane, making
many global-scale problems easier to solve; (c) it solves both
2D and 3D problems; and (d) it offers a simple Python appli-
cation program interface (API) to accommodate diverse
use cases.

Repeating the simple point-source error analysis from the
Accuracy section for identical problems solved using FM3D
and PyKonal demonstrates the improved accuracy achieved
by PyKonal (Fig. 10). We consider a point source in homo-
geneous velocity structure and compare errors associated with
FM3D and two different configurations of PyKonal. In all three
cases, the computational grid comprises 256, 5, and 256 nodes
along the radial, polar, and azimuthal axes, with 10 km, 0.125°,
and 0.125° node intervals, respectively. Both FM3D and
PyKonal can significantly reduce the error throughout the
computational domain using a refined source grid. The refined

Figure 9. Comparing event locations obtained using NonLinLoc
with locations obtained using the algorithm outlined in the
Locating Earthquakes section. Changes in all quantities, ΔQ, are
calculated as ΔQ � QNonLinLoc − QPyKonal, in which QNonLinLoc and
QPyKonal are the quantities associated with NonLinLoc and
PyKonal locations, respectively. (a) Map of displacement vectors
pointing from locations computed using NonLinLoc to locations
computed as earlier. (b–f) Histograms of location parameter
changes after relocating events: (b) change in event latitude;
(c) change in event longitude; (d) change in event depth;
(e) change in event origin time; and (f) change in root mean
square (rms) residual between observed and synthetic arrival
times.

Figure 10. Absolute errors for travel-time fields computed
through a homogeneous velocity model (v � 1 km=s� using
three different methods: (a) PyKonal with a single coarse grid;
(b) FM3D with a refined source grid and a coarse far-field grid;
and (c) PyKonal with a refined source grid and coarse far-field
grid.
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source grid for FM3D in this test spans 20 coarse-grid nodes
along each coordinate axis, and the node intervals are
decreased by a factor of 10; we chose these parameters because
they provide a reasonable trade-off between execution time
and accuracy. The refined source grid for PyKonal consists
of a spherical grid centered on the source with a grid refine-
ment factor of 5 and extending 40 coarse grid nodes in the
radial direction. The accuracy of FM3D in this test approaches
that of PyKonal in the region far from the source, but required
over an order of magnitude more execution time (41.80 s com-
pared to 1.12 s) to do so on our workstation (a Dell Optiplex
9020 workstation with a quad-core 3.4 GHz Intel Core i7-4770
CPU). Although PyKonal can achieve better accuracy with less
execution time than FM3D, and is thus preferable in certain
use cases, we note that FM3D offers more flexibility as it
can track multiple reflection and transmission phases as well
as teleseismic phases propagating through local 3D structure.

Wavefronts that cross over the ϕ � 0 plane need to be care-
fully treated to solve problems at global scales. If the periodicity
across this plane is neglected, the obtained solutions will, in the
best-case scenario, only be valid in a hemisphere centered on
the source. By properly accounting for this periodicity, our tool
accommodates global-scale problems without any extra effort
required of the user.

Python is a popular high-level interpreted programming
language that suffers from slow execution as a result of the fact
that it checks data types at run time. Languages that check data
types during compilation, such as C, C++, and Fortran, execute
quickly but are slow for developments. We leverage the high-
level scripting capabilities of Python, while maintaining C-like
speeds by producing compiled C extensions for Python using
the Cython compiler framework. The code functions as any
pure Python package would, but with the speed of C. This
makes the presented tool user friendly while standing up to
computationally demanding tasks.

Applications
A robust ray tracer has many applications; we highlight the
four uses that we had in mind while developing this tool: locat-
ing earthquakes, body-wave tomography, computing takeoff
angles, and Kirchhoff depth migration.

Locating earthquakes typically involves finding the set of
spacetime coordinates that minimizes a misfit function
between observed and synthetic arrival times. In seismically
active fault zones where highly damaged rocks are juxtaposed
against one or two different host rocks (e.g., Ben-Zion and
Sammis, 2003; Fang et al., 2016) and other areas where wave-
speed varies significantly, 3D heterogeneities need to be con-
sidered to accurately locate events. In the Locating Earthquakes
section, we showed that developing an inversion framework to
locate earthquakes using PyKonal to solve the forward problem
is straightforward. More sophisticated algorithms than the one
presented here can be developed. One potential application of

PyKonal is to incorporate it into a probabilistic location algo-
rithm that uses a Markov chain Monte Carlo approach to
include a priori information about the data and model.
Such an algorithm may provide more reliable location esti-
mates and associated uncertainties.

Similar to locating earthquakes, body-wave tomography
typically involves minimizing a misfit function between
observed and synthetic arrival times. In addition to the optimal
spacetime coordinates of the sources, the optimal velocity
structure is sought in body-wave tomography. In active-source
surveys, for which the source locations are known, only the
velocity model is sought. Again, being able to accurately syn-
thesize travel times in the presence of 3D heterogeneity is cru-
cial for deriving accurate velocity models.

Inverting first-motion polarity data for source mechanisms
depends on the takeoff angles at which observed rays leave the
focal sphere, and small differences in takeoff angles can pro-
duce significantly different responses at distant observation
points. Because PyKonal can reduce travel-time errors in
the near-source region (Fig. 10), more accurate ray paths,
and thus takeoff angles, can be computed. More accurate take-
off angles should yield more accurate focal mechanisms and
lead to better resolution of rupture kinematics.

Kirchhoff depth migration (Schneider, 1978) is a method
for transforming seismic data from the time domain to the
depth domain that finds wide use in seismic image processing
as a means of resolving structural complexities by backpropa-
gating scattered energy to the scatterer’s position in the image.
Migrating data in this way requires computing travel-time
fields that account for 3D structural heterogeneity. PyKonal
can be integrated easily into imaging workflows to facilitate
clearer and more accurate images of subsurface structures.

Jupyter notebook examples and documentation
To promote reproducibility and provide examples of how to use
the code, we include as supplemental material Jupyter notebooks
that can be used to recreate Figures 3–8. We encourage inter-
ested readers to begin familiarizing themselves with the tool by
reproducing the figures in this article. After running the example
notebooks, users will benefit from API documentation, which is
being actively developed (see Data and Resources).

Conclusions
PyKonal is a new open-source Python package for computing
travel times and tracing ray paths in 2D and 3D based on the
FMM for solving the eikonal equation (Sethian, 1996). It is
designed to be easy enough for novice programmers to use
and efficient enough to solve complex research problems in
seismology without sacrificing generality or extensibility.
The most recent release of the code can be downloaded from
GitHub website (see Data and Resources). Users are encour-
aged to submit bug reports via GitHub or via email to the first
author at malcolm.white@usc.edu.
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We are now using PyKonal in a flexible tomographic
method requiring minimal a priori information based on
Fang et al. (2020), and are extending that method to include
a nonlinear event relocation step similar to the one in the
Locating Earthquakes section. We are applying the new meth-
ods to complementary data sets (Hutton et al., 2010; White
et al., 2019) to derive integrated hierarchical images of the crust
in southern California, with focus on the San Jacinto fault zone
and region surrounding the 5 July 2019 Mw 7.1 Ridgecrest
earthquake sequence.

Data and Resources
The MITP2008 velocity model used in this article is available via the
cited reference (Li et al., 2008). Figures 3–10 were made using
Matplotlib (Hunter, 2007). The other relevant data are from the
following sources: https://malcolmw.github.io/pykonal-docs and
https://github.com/malcolmw/pykonal/releases. All websites were last
accessed in May 2020. Supplemental material for this article includes
six Jupyter Notebooks to recreate Figures 3–8.
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