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Classifying seismograms using the FastMap
algorithm and support-vector machines
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Neural networks and related deep learning methods are currently at the leading edge of

technologies used for classifying complex objects such as seismograms. However they

generally demand large amounts of time and data for model training and their learned models

can sometimes be difficult to interpret. FastMapSVM is an interpretable machine learning

framework for classifying complex objects, combining the complementary strengths of Fas-

tMap with support vector machines (SVMs) and extending the applicability of SVMs to

domains with complex objects. FastMap is an efficient linear-time algorithm that maps

complex objects to points in a Euclidean space while preserving pairwise domain-specific

distances between them. Here we invoke FastMapSVM as a lightweight alternative to neural

networks for classifying seismograms. We demonstrate that FastMapSVM outperforms other

state-of-the-art methods for classifying seismograms when train data or time is limited. We

also show that FastMapSVM can provide an insightful visualization of seismogram clustering

behaviour and thus earthquake classification boundaries. We expect FastMapSVM to be

viable for classification tasks in many other real-world domains.
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Various Machine Learning (ML) and Deep Learning (DL)
methods, such as Neural Networks (NNs), are popularly
used for classifying complex objects. For example, a

Convolutional NN (CNN) is used for classifying Sunyaev-Zel’-
dovich galaxy clusters1, a densely connected CNN is used for
classifying images2, and a deep NN is used for differentiating the
chest X-rays of Covid-19 patients from other cases3. However,
they generally demand large amounts of time and data for model
training; and their learned models can sometimes be difficult to
interpret.

In this paper, we advance FastMapSVM—an interpretable ML
framework for classifying complex objects—as a lightweight
alternative to NNs for classification tasks in which train data or
time is limited and a suitable distance function can be defined.
While most ML algorithms learn to identify characteristic fea-
tures of individual objects in a class, FastMapSVM leverages a
domain-specific distance function on pairs of objects. It does this
by combining the strengths of FastMap and support vector
machines (SVMs). In its first stage, FastMapSVM invokes Fas-
tMap, an efficient linear-time algorithm that maps complex
objects to points in a Euclidean space, while preserving pairwise
domain-specific distances between them. In its second stage, it
invokes SVMs and kernel methods for learning to classify the
points in this Euclidean space.

The FastMapSVM framework that we implement in this
paper is conceptually identical to the SupFM-SVM method4,
the application of which to complex objects was anticipated
by the original authors. We present, to the best of our knowl-
edge, the first such application to complex objects by using
FastMapSVM to classify seismograms. We compare model
performance against state-of-the-art NN alternatives in the
seismogram domain using a benchmark data set to demonstrate
the performance characteristics of FastMapSVM. We further
demonstrate that FastMapSVM can be easily deployed for dif-
ferent real-world classification tasks in the seismogram domain.
Our results motivate FastMapSVM as a potentially advanta-
geous alternative to NNs in other domains when train data or
time is limited and a suitable distance function can be defined.
Additional results from a multi-class classification problem in a
different domain (images of hand-written digits) are included
as Supplementary Material (Suppl. Text S1 and Suppl. Figs. S3
and S4).

In this paper, we illustrate the advantages of FastMapSVM in
the context of classifying seismograms. This is a particularly
illustrative domain because seismograms are complex objects
with subtle features indicating diverse energy sources such as
earthquakes, ocean-Earth interactions, atmospheric phenomena,
and human-related activities. We address two fundamental,
perennial questions in seismology: (a) Does a given seismogram
record an earthquake? and (b) Which type of wave motion, e.g.,
compressional (P-wave) versus shear (S-wave), is predominant in
an earthquake seismogram? In Earthquake Science, answering
these questions is referred to as “detecting earthquakes” and
“identifying phases”, respectively. The development of efficient,
reliable, and automated solution procedures that can be easily
adapted to new environments is essential for modern research
and engineering applications in this field, such as in building
Earthquake Early Warning Systems. Moreover, a model imposing
modest demands on train data will aid the analysis of signal
classes for which large train data sets are unavailable, such as
“icequakes,” stick-slip events at the base of landslides, and nui-
sance signals recorded during temporary seismometer deploy-
ments. Towards this end, we show that FastMapSVM is a viable
ML framework. Through experiments, we show that Fas-
tMapSVM (a) outperforms state-of-the-art NNs for classifying
seismograms when train data or time is limited, (b) can be rapidly

deployed for different real-world classification tasks, and (c) is
robust against noisy perturbations to model inputs.

The key contributions of this paper are as follows:

1. We present the first application of FastMapSVM to
classifying complex objects—namely, seismograms—for
which it is hard to extract features of individual objects
but is easy to define a distance function on pairs of objects.

2. We demonstrate that FastMapSVM outperforms state-of-
the-art NNs for classifying seismograms when train data or
time is limited.

3. We discuss the sensitivity of FastMapSVM’s performance
to training parameters such as the size of the train data and
the dimensionality of the Euclidean embedding.

4. We extrapolate our results to motivate FastMapSVM as a
potentially advantageous, lightweight alternative to NNs for
classifying complex objects in other domains as well when
train data or time is limited.

5. We provide an efficient GPU-accelerated implementation
of FastMapSVM, publicly available at: https://github.com/
malcolmw/FastMapSVM.

Results
Data. We assess the performance of FastMapSVM using seis-
mograms from two data sets. All seismograms used in this paper
record ground velocity at a sampling rate of 100 s−1 and are
bandpass filtered between 1 Hz and 20 Hz before analysis using a
zero-phase Butterworth filter with four poles; we refer to this
frequency band as our passband.

Stanford Earthquake Data Set (STEAD). The first data set is the
Stanford Earthquake Data Set (STEAD)5, a benchmark data set
with >1.2 × 106 carefully curated, three-component (3C), 60 s
seismograms for training and testing algorithms in Earthquake
Science. We select a balanced subset of 65,536 3C seismograms
from the STEAD comprising 32,768 “earthquake” and 32,768
“noise” seismograms. Earthquake seismograms record ground
motions induced by a nearby earthquake; whereas noise seis-
mograms record no known earthquake-related ground motions.
We randomly select earthquake seismograms using a selection
probability that is inversely proportional to the kernel density
estimate of the 5-D joint distribution over (a) epicentral distance,
(b) event magnitude, (c) event depth, (d) time interval between P-
and S-wave arrivals, and (e) signal-to-noise ratio (SNR) (Suppl.
Fig. S1). This scheme is designed to yield a broad distribution of
seismograms. All earthquake seismograms are recorded by a
seismometer within 100 km of the epicenter, have a hypocentral
depth of less than 30 km, and have P- and S-wave arrival times
manually identified by a trained analyst (no automated arrival
picks). Distributions in this subset that are skewed towards
shallow earthquakes with low magnitude and low SNR reflect the
distribution of natural earthquakes and their recordings. Noise
seismograms are randomly selected to maximize the diversity of
geographic recording locations.

From this base data set of 65,536 seismograms, we draw a
simple random sample (SRS) of 16,384 earthquake seismograms
and an equal-sized SRS of noise seismograms for model training
(the “train” data set). The 32,768 remaining seismograms make
up the “test” data set. The test data are trimmed to 30 s
per seismogram, including an amount of time uniformly
distributed between 4 s and 15 s preceding the P-wave arrival
for earthquake seismograms. Note that both train and test data
sets are balanced across the earthquake and noise classes. We
iteratively draw SRSs from the train data set to create multiple
smaller, balanced train data sets, each of which is half the size of
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the sample from which it was drawn. Thus, we have nested,
balanced train data sets with sample sizes 2n for integer n between
6 and 15.

To assess model performance for identifying phases, we select
an independent subset of 538 3C, 3 s seismograms from the
STEAD, all of which are recorded by station TA.109C;
269 seismograms start 1 s before a P-wave phase arrival, and
269 seismograms start 1 s before an S-wave phase arrival.

Ridgecrest data set. The second data set, which we simply refer to
as the “Ridgecrest” data set, comprises data recorded by station
CI.CLC of the Southern California Seismic Network (SCSN) on 5
July 2019, the first day of the aftershock sequence following the
2019 Ridgecrest, CA, earthquake pair and on 5 December 2019,
five months after the mainshocks. We use the earthquake catalog
published by the Southern California Earthquake Data Center
(SCEDC) to extract 512 3C, 8 s seismograms, 256 of which record
both P- and S-wave phase arrivals from a nearby aftershock
(between 4.5 km and 27.6 km epicentral distance), and the
remaining 256 of which record only noise. All 512 of these signals
are recorded on 5 July 2019. Earthquake magnitudes represented
in the Ridgecrest data set range between 0.5 and 4.0, earthquake
depths range between 900 m above sea level and 9.75 km below
sea level, and SNRs range between −8 dB and 73 dB. The max-
imum peak ground acceleration recorded in the Ridgecrest data
set is 0.197 m/s2.

We use the Ridgecrest data set to first demonstrate the
robustness of FastMapSVM against noisy perturbations. We then
use it to demonstrate FastMapSVM’s ability to detect new
microearthquakes by automatically scanning a 24 h, continuous,
3C seismogram recorded between 00:00:00 and 23:59:59 (UTC)
on 5 December 2019. Whereas the analysis on the STEAD
demonstrates FastMapSVM’s performance on a benchmark, the
analysis on the Ridgecrest data set provides an example of a more
realistic use case of FastMapSVM: After handpicking a small
number of earthquake and noise signals—a task that even a
novice analyst can perform in a few hours—continually arriving
seismic data can be automatically scanned for additional earth-
quake signals. This capability manifests the primary conclusion of

the preceding robustness test: Even when earthquake signals are
difficult to discern by the human eye, FastMapSVM can often
reliably detect them.

STEAD analysis
Detecting earthquakes in the STEAD. The EQTransformer DL
model6 for simultaneously detecting earthquakes and identifying
phase arrivals is arguably the most accurate, publicly available
model for this pair of tasks. The authors of EQTransformer report
perfect precision and recall scores for detecting earthquakes in
10% of the STEAD waveforms after training its roughly 3.72 × 105

model parameters with 85% of the STEAD waveforms; 5% of the
STEAD waveforms were reserved for model validation. (Note that
the authors of EQTransformer used a version of the STEAD with
1 × 106 and 3 × 105 earthquake and noise waveforms, respectively,
which differs slightly from the newer version of the STEAD we
use.) The CRED model7 is another DL model for detecting
earthquakes, which scored perfect precision and 0.96 recall using
the same train and test data as EQTransformer6. The CRED
model does not identify phase arrivals. We choose these two DL
models for comparison because EQTransformer is popularly
used8,9 and represents the state-of-the-art in general practice,
CRED is designed for the sole task of detecting earthquakes (i.e.,
does not simultaneously identify phases), and the pre-trained
models are readily available through the SeisBench10 package.

To compare the performance of FastMapSVM against
EQTransformer and CRED in the case of limited train data, we
train multiple instances of each model using different amounts of
train data and test them on the same test data (the 32,768 test
seismograms selected from the STEAD, as described above). All
models are trained and tested using an NVIDIA RTX A6000
GPU. We train and test each model multiple times for each train
data size to estimate statistics for performance scores (F1,
accuracy, precision, and recall; Fig. 1a, b, d, e), train time
(Fig. 1c), and test time (Fig. 1f). Performance scores are averaged
over both labels. We repeat 20 trials for each train data size for
FastMapSVM but limit the number of trials for EQTransformer
and CRED to 10 because training becomes prohibitively time-

Fig. 1 Model performance metrics with varying train data size. Shows the performance of EQTransformer (black circles and solid line), CRED (orange
squares and dashed line), and FastMapSVM (light blue triangles and dash-dotted line) on the STEAD with varying train data size. a–f The F1 score,
accuracy, train time, precision, recall, and test time, respectively. Error bars represent the standard deviation of the measurements over 20 trials for
FastMapSVM and 10 trials for EQTransformer and CRED. The recall is identical to the accuracy in our case.
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consuming for large train data sizes. The FastMapSVM model
used here comprises a four-dimensional Euclidean embedding.
Train data for FastMapSVM are trimmed to 30 s per seismogram,
including 4 s of data preceding the P-wave arrival for earthquake
seismograms. Unless otherwise noted, we set the probability
threshold for the decision boundary to 0.5 in this paper.

FastMapSVM consistently outperforms EQTransformer and
CRED using less train time for all train data sizes. FastMapSVM
train times are 1–3 orders of magnitude smaller than those for
EQTransformer and CRED. The respective performances of
EQTransformer and CRED approach that of FastMapSVM as the
train data size increases; however, they do so at the cost of rapidly
increasing train times. The prediction times for EQTransformer
and CRED are 1.33–2.08 and 3.17–4.82 times the prediction time
for FastMapSVM, respectively. FastMapSVM also exhibits more
stable performance than the DL models (i.e., less variance
between trials), because the final performance of the DL models is
sensitive to the random initial values of the model parameters.

The performance of FastMapSVM can be further improved by
increasing the dimensionality of the Euclidean embedding, as
demonstrated below; however, the prediction and train time both
increase with the dimensionality of the embedding. This increase
owes primarily to the number of calls to the user-supplied
distance function, which increases linearly with the dimension-
ality of the Euclidean embedding. Thus, efficient distance
functions need to be designed to maintain end-to-end computa-
tional efficiency for models with high-dimensional Euclidean
embeddings.

Sensitivity to train data size and dimensionality of Euclidean
embedding. Two important, interdependent questions concerning
FastMapSVM follow: (a) How much train data is needed to train
the model? and (b) How many Euclidean dimensions are needed
to represent the objects being classified? To address these ques-
tions, we obtain a suite of models for different train data sizes and
dimensionalities of Euclidean embedding. For each pair of train

data size and dimensionality of Euclidean embedding, we repeat
20 trials of model training and testing to obtain estimates of
F1 score statistics (Fig. 2)—we choose the F1 score here because it
is sensitive to both model precision and recall. Furthermore, recall
is identical to accuracy in this analysis. All models are tested on
the same test data used in the preceding experiments.

Model performance generally increases with, and exhibits the
property of diminishing returns with respect to, train data size
(Fig. 2a). This property is favorable because strong model
performance can be achieved with very small train data sizes.
For example, models trained on only 64 seismograms—a small
fraction of what typical DL models require—achieve average
F1 scores as high as 0.91. All models perform poorly when the
number of train instances per class is equal to the number of
Euclidean dimensions, and large models perform poorer than
small models in these cases. A significant improvement is seen,
however, when the train data size per class is at least twice the
number of dimensions. Thus, models should be trained using a
number of instances per class that is at least twice the number of
dimensions.

Model performance also generally increases with, and exhibits
the property of diminishing returns with respect to, dimension-
ality of Euclidean embedding (Fig. 2b). This property is favorable
because small models yield rapid predictions and can be trained
quickly using small data sets. For example, an eight-dimensional
model trained with only 512 train instances achieves an average
F1 score of 0.93. Furthermore, this property is attractive from the
perspectives of memory consumption and data visualization in
low-dimensional Euclidean space.

Models comprising only two Euclidean dimensions achieve
average F1 scores as high as 0.90; however, the performance of
such small models varies significantly, and does not increase with
train data size reliably. Models comprising four dimensions
achieve average F1 scores as high as 0.93 and exhibit significantly
less variability than those comprising only two. These results
suggest that models should comprise at least four dimensions for

Fig. 2 FastMapSVM’s sensitivity to train data size and dimensionality of Euclidean embedding. Shows the F1 score for varying train data size and
dimensionality of Euclidean embedding. a, b These results for train data size and dimensionality of Euclidean embedding on the horizontal axis,
respectively. Error bars represent the standard deviation of the measurements over 20 trials. Marker and line colors in (a) represent the number of
dimensions of the embedding. Marker and line colors in (b) represent the number of instances in the train data set.
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most real-world applications. Moreover, trade-offs between
model train time, train data size, prediction time, and
performance make models comprising larger embeddings optimal
in different circumstances. Models comprising more than 32
dimensions yield marginal improvements in this application, but
take significantly longer to make predictions. Thus, we recom-
mend users start with a number of model dimensions between 4
and 32 when training FastMapSVM in other application domains.

Identifying phase arrivals. As another illustration designed to
demonstrate the effectiveness of FastMapSVM, we use the subset
of 538 three-second seismograms recorded by station TA.109C
from the STEAD to train and test a suite of models for classifying
P- and S-wave phase arrivals (Fig. 3). We conduct 100 trials in
which, for each trial, we select a balanced SRS of 268 seismograms
for model training and test the model on the remaining
270 seismograms. Average F1, accuracy, precision, and recall
scores are all above 0.89. Although these scores are relatively
modest in comparison to those of state-of-the-art NNs designed
for similar tasks and trained using much larger data sets, they
demonstrate that FastMapSVM can be easily trained for strong
performance on different classification tasks using only small
amounts of time and data.

Ridgecrest analysis
Robustness against noisy perturbations. It is important that a
classification framework is robust against noisy perturbations of
inputs. In general, the robustness of FastMapSVM against noisy
perturbations may depend on the characteristics of the data and
the chosen distance function. For classifying seismograms, we
demonstrate FastMapSVM’s robustness against noisy perturba-
tions made to the Ridgecrest data set using the distance function
described in the Methods section. We conduct 100 trials in which,
for each trial, we randomly select 8 earthquake signals and 8 noise
signals to train a FastMapSVM model with a four-dimensional
Euclidean embedding; the 496 remaining seismograms are used
for model testing. Each test instance is circularly shifted by an
offset (in seconds) chosen uniformly at random from the interval
[−2, 2]. FastMapSVM classifies test seismograms with an average
accuracy of (0.995 ± 0.001). We subsequently conduct a set of
experiments in which each model’s performance is scored after
perturbing signals in the test data set with increasing amounts of
Gaussian noise. First, all test signals are normalized by their

standard deviation. Then, for each trial, we perturb each signal in
the test data set by adding Gaussian noise with zero mean and
standard deviation σ; σ increases by 0.5 after each trial. Figure 4a
shows how a waveform changes with increasing σ. Figure 4b
shows the performance of FastMapSVM with increasing σ. Fas-
tMapSVM continues to classify seismograms with high accuracy
and precision, even as earthquake signals become indiscernible to
the human eye; e.g., the FastMapSVM model achieves 0.96
accuracy and precision scores for σ= 2. These results encourage
us to deploy FastMapSVM in noisy environments to detect low-
amplitude signals.

Counterintuitively, the model correctly labels earthquakes
regardless of the amplitude of the noisy perturbations. Moreover,
the model misclassifies noise signals as earthquakes (false positive
errors) more frequently when the amplitude of the noisy
perturbations is increased. With enough added noise, the model
classifies all signals as earthquakes. Because we report perfor-
mance scores averaged over both labels, this phenomenon is not
obvious in Fig. 4.

The unique frequency content of the noisy perturbations
(Suppl. Fig. S2) is responsible for the bias towards false positives
in these experiments. In our passband, the average frequency
spectrum of earthquake signals is nearly flat; whereas the average
frequency spectrum of authentic seismic noise signals has
prominent peaks near the low- and high-frequency endpoints.
Because the noisy perturbations are Gaussian, their frequency
spectrum is flat. This makes the spectra of noisy perturbations
more similar to those of earthquake signals than to those of
authentic seismic noise signals.

Automatic scanning. We further demonstrate a use case-inspired
application of FastMapSVM using a 32-dimensional model
trained on 256 earthquake signals and 256 noise signals selected
randomly from the Ridgecrest data set. We apply the model to 8 s
windows extracted from a 24 h continuous, 3C seismogram with
25% overlap and register detections for windows with detection
probability > 0.95. The test seismogram was recorded by station
CI.CLC between 00:00:00 and 23:59:59 (UTC) on 5 December
2019. We also apply the pre-trained EQTransformer6 and CRED7

models on the same data.
For each detection, we compute two quantities: (1) the

maximum SNR and (2) the maximum normalized cross-
correlation coefficient measured against the 256 earthquake
seismograms used to train FastMapSVM (Fig. 5). We define the
SNR as

SNR ¼ 10 log10
Psignal

Pnoise

� �
; ð1Þ

where Psignal and Pnoise represent the average power of the signal
and noise, respectively, which are measured in 1 s and 10 s sliding
windows, respectively.

CRED registers the largest number of detections (1831),
EQTransformer registers the fewest (805), and FastMapSVM
registers an intermediate number (1453). Although CRED
registers the largest number of detections, a large proportion of
them correspond to very low SNR (<2.5) signals with low
normalized cross-correlation coefficients (<0.2), which implies
that a large proportion of them are likely false detections. Indeed,
visual inspection of an SRS of these detections confirms this.
FastMapSVM also registers a significant number of detections
with relatively low SNR (<5); however, these detections are
generally associated with higher normalized cross-correlation
coefficients (>0.2) and slightly higher SNR (>2.5).

The majority of detections registered by FastMapSVM are
associated with low to moderate SNR (between 2.5 and 10) and

Fig. 3 FastMapSVM’s performance on identifying phases for station
TA.109C in STEAD. Shows the “violin plot” for F1, accuracy, precision, and
recall score distributions obtained by the learned model for classifying P-
and S-wave phase arrivals at station TA.109C in the STEAD over 100 trials.
The bottom, middle, and top horizontal bars represent the minimum, mean,
and maximum values, respectively, for each distribution. Shaded blue
regions show kernel density estimates for the distributions.
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Fig. 4 FastMapSVM’s robustness against noisy perturbations. Shows the performance of FastMapSVM on the Ridgecrest data set. (a) shows how a
sample test waveform changes with the addition of increasing levels of Gaussian random noise with zero mean and standard deviation σ. It uses a vertical
time-axis and an increasing σ on the horizontal axis. Each waveform is self-normalized for plotting. (b) shows how the F1 (black circles and solid line),
accuracy (orange squares and dashed line), and precision (light blue triangles and dash-dotted line) scores vary with increasing σ. Error bars represent the
standard deviation of the measurements over 100 trials. The recall is omitted from this plot because recall and accuracy are identical in this case.

Fig. 5 Comparison of automatic scanning results produced by EQTransformer, CRED, and FastMapSVM. Shows the empirical joint distribution of
maximum SNR (dB) and normalized cross-correlation coefficient for detections produced by (left) EQTransformer, (middle) CRED, and (right)
FastMapSVM in an automatic scan of 24 h of data.
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normalized cross-correlation coefficients (between 0.2 and 0.4).
This is an expected consequence of the Gutenberg-Richter
statistics that describe earthquake magnitude-frequency distribu-
tions. Perhaps surprisingly, FastMapSVM also registers a greater
number of detections with high SNR (>10) than both EQTrans-
former and CRED. Visual inspection confirms that FastMapSVM
seldom misses a high-SNR event detected by EQTransformer or
CRED, whereas EQTransformer and CRED do occasionally miss
high-SNR events detected by FastMapSVM.

Results presented in Fig. 5 suggest that (1) EQTransformer has
the lowest detection and false detection rates, (2) CRED has the
highest detection and false detection rates, (3) FastMapSVM has
relatively high detection and low false detection rates, and (4)
FastMapSVM detects high-SNR events with greater fidelity than
EQTransformer and CRED.

Discussion
Our use of FastMapSVM to classify seismograms is, to the best of
our knowledge, the first application of the algorithm to complex
objects for which a combination of representation and classifi-
cation learning is necessary. Whereas prior work4 focused on the
sparse kernel representations enabled by FastMapSVM, our work
focuses on the applicability of FastMapSVM in a real-world
domain in which the objects are overwhelmingly complex for
regular SVMs to be effective. In this case, we leverage a domain-
specific distance function on pairs of seismograms, which is easier
to build than identifying the subtle features of individual seis-
mograms. Intuitively, FastMap is used as a “representational
counterpart” to SVMs in FastMapSVM. Therefore, we focus on
illustrating the benefits of FastMapSVM in a complex domain
where a combination of representation and classification learning
is required. Moreover, we compare FastMapSVM against other
ML methods, namely, NNs, that seamlessly integrate the tasks of
representation and classification learning. In this section, we
discuss some of the advantages of FastMapSVM over existing ML
methods for classifying complex objects such as seismograms. We
base our discussion on our results in the specific context of
classifying seismograms and generalize to the broader contexts of
ML and data visualization.

Many existing ML algorithms for classification do not leverage
domain knowledge when used off the shelf. Although a domain
expert can occasionally incorporate domain-specific features of
the objects being classified into the classification task, doing so
becomes increasingly difficult as the complexity of the objects
increases. FastMapSVM enables domain experts to incorporate
their domain knowledge via a distance function instead of relying
on complex ML models to infer the underlying structure in the
data entirely. In fact, in many real-world domains, it is easier to
construct a distance function on pairs of objects than it is to
extract features of individual objects. Examples include DNA
strings, images, and text documents, for which the edit distance,
Minkowski distance11, and cosine similarity12, respectively, are
well defined. Extracting features of individual objects is challen-
ging in all of these domains, as in our seismogram domain. In the
seismogram domain, our a priori knowledge that earthquake
seismograms typically bear similarities to one another is encap-
sulated in a distance function that quantifies the normalized
cross-correlation of the waveforms. This distance metric closely
resembles other similarity metrics that have been extensively used
in previous works in the Earthquake Science community13–16.
FastMapSVM’s strong performance owes partly to this incor-
poration of domain knowledge.

In addition, many existing ML algorithms produce results that
are hard to interpret or explain. We define model interpretability
as the degree to which causal mappings between model inputs

and outputs can be understood by humans17. For example, in
NNs, a large number of interactions between neurons with
nonlinear activation functions makes a meaningful interpretation
of causal mappings challenging. FastMapSVM, on the other hand,
embeds complex objects in a Euclidean space by considering only
the distance function defined on pairs of objects, despite the
complexity of the objects themselves. In effect, it simplifies the
description of the objects by assigning Euclidean coordinates, i.e.,
points in Euclidean space, to them with a simple interpretation:
Points that are close in the Euclidean sense represent objects that
are similar in the sense defined by the domain-specific distance
function. Moreover, because the distance function is itself user-
supplied and encapsulates domain knowledge, it can often be
intuitively understood, as is the case for our cross-correlation
distance in the seismogram domain. Our discussion of the rea-
sons for the disproportionate number of false positives produced
by FastMapSVM in the Robustness against noisy perturbations
section provides an example of model interpretability in action.
Moreover, FastMapSVM provides a perspicuous visualization of
the objects and the classification boundaries between them
(Fig. 6). FastMapSVM produces such visualizations very effi-
ciently because it invests only linear time in generating the
Euclidean embedding.

FastMapSVM uses significantly smaller amounts of time and
data for model training compared to the NN models we tested.
We demonstrate this key feature of FastMapSVM in the seis-
mogram domain and expect that these results will generalize to
other domains. Whereas NNs and other ML algorithms store
abstract representations of the train data in their model para-
meters, FastMapSVM stores explicit references to some of the
original objects, referred to as pivots. When making predictions,
test instances are compared directly to the pivots using the user-
supplied distance function. FastMapSVM thereby obviates the
need to learn a complex transformation of the input data and thus
significantly reduces the amount of time and data required for
model training. Moreover, given N train instances, FastMapSVM
leverages O(N2) pieces of information via the distance function,
which is defined on every pair of objects. In contrast, ML algo-
rithms that focus on individual objects leverage only O(N) pieces

Fig. 6 Perspicuous visualization of seismograms and classification
boundaries produced by FastMapSVM. Shows a visualization of
FastMapSVM’s classification boundary (dashed, white curve) and decision
function (background) in a two-dimensional Euclidean embedding of the
train data from the Ridgecrest data set. EQ refers to earthquakes. Warm
and cold colors represent regions of high-confidence for earthquake and
noise labels, respectively. Black background represents regions of relatively
high uncertainty.
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of information. The efficiency of FastMapSVM is demonstrated
by our results from the seismogram domain.

In general, FastMapSVM extends the applicability of SVMs
and kernel methods to domains with complex objects. With
increasing complexity of the objects, deep NNs have gained more
popularity compared to SVMs because it is unwieldy for SVMs to
represent all the features of complex objects in Euclidean space.
FastMapSVM, however, revitalizes the SVM approach by lever-
aging a distance function to create a low-dimensional Euclidean
embedding of the objects.

Overall, any application domain hindered by a paucity of train
data but possessing a well-defined distance function on pairs of its
objects can benefit from the advantages of FastMapSVM.
Examples of such applications in Earthquake Science include
analyzing and learning from data obtained by distributed acoustic
sensing technology or during temporary deployments of “large-
N” nodal arrays. Furthermore, the efficiency of FastMapSVM
makes it suitable for real-time deployment, which is critical for
engineering Earthquake Early Warning Systems.

Conclusions
In this paper, we advance FastMapSVM—an interpretable ML
framework that combines the complementary strengths of Fas-
tMap and SVMs—as an advantageous, lightweight alternative to
existing methods, such as NNs, for classifying complex objects
when train data or time is limited. FastMapSVM offers several
advantages. First, it enables domain experts to incorporate their
domain knowledge using a distance function. This avoids relying
on complex ML models to infer the underlying structure in the
data entirely. Second, because the distance function encapsulates
domain knowledge, FastMapSVM naturally facilitates interpret-
ability and explainability. In fact, it even provides a perspicuous
visualization of the objects and the classification boundaries
between them. Third, FastMapSVM uses significantly smaller
amounts of time and data for model training compared to other
ML algorithms. Fourth, it extends the applicability of SVMs and
kernel methods to domains with complex objects.

We demonstrated the efficiency and effectiveness of Fas-
tMapSVM in the context of classifying seismograms. On the
Stanford Earthquake Data Set, we showed that FastMapSVM
performs comparably to state-of-the-art NN models in terms of
precision, recall, and accuracy. It also uses significantly smaller
amounts of time and data for model training compared to other
methods and can yield faster predictions. On the Ridgecrest data
set, we first demonstrated the robustness of FastMapSVM against
noisy perturbations. We then demonstrated its ability to reliably
detect new microearthquakes that are otherwise difficult to detect.

In future work, we expect FastMapSVM to be viable for clas-
sification tasks in many other real-world domains. In Earthquake
Science, we will apply FastMapSVM to analyze and learn from
data obtained during temporary deployments of large-N nodal
arrays and distributed acoustic sensing. In Computational
Astrophysics, we anticipate the use of FastMapSVM for identi-
fying galaxy clusters based on cosmological observations. In
general, the efficiency and effectiveness of FastMapSVM also
make it suitable for real-time deployment in dynamic environ-
ments in applications such as Earthquake Early Warning Systems.

Our implementation of FastMapSVM is publicly available at:
https://github.com/malcolmw/FastMapSVM.

Methods
Our FastMapSVM method comprises two main components: (1) The FastMap
algorithm18 for embedding complex objects in a Euclidean space using a distance
function, and (2) SVMs for classifying objects in the resulting Euclidean space. We
explain the key algorithmic concepts behind each of these components below.

Review of the FastMap algorithm. FastMap18 is a Data Mining algorithm that
embeds complex objects—such as audio signals, seismograms, DNA sequences,
electrocardiograms, or magnetic-resonance images—into a K-dimensional Eucli-
dean space, for a user-specified value of K and a user-supplied function D that
quantifies the distance, or dissimilarity, between pairs of objects. The Euclidean
distance between any two objects in the embedding produced by FastMap
approximates the domain-specific distance between them. Therefore, similar
objects, as quantified by D, map to nearby points in Euclidean space; whereas
dissimilar objects map to distant points. Although FastMap preserves O(N2)
pairwise distances between N objects, it generates the embedding in only O(KN)
time. Because of its efficiency, FastMap has already found numerous real-world
applications, including in Data Mining18, shortest-path computations19, commu-
nity detection and block modeling20, and solving combinatorial optimization
problems on graphs21.

Below, we review the FastMap algorithm18 and describe our minor
modifications to it. These modifications suit the purposes of the downstream
classification task. Our review of FastMap also serves completeness and the readers’
convenience.

FastMap embeds a collection of complex objects in an artificially created
Euclidean space that enables geometric interpretations, algebraic manipulations,
and downstream application of ML algorithms. It gets as input a collection of
complex objects O and a distance function Dð�; �Þ, where DðOi;OjÞ represents the
domain-specific distance between objects Oi;Oj 2 O. It generates a Euclidean

embedding that assigns a K-dimensional point pi ¼ pi;1; pi;2; ¼ ; pi;K

� �
2 RK to

each object Oi. A good Euclidean embedding is one in which the Euclidean distance

k pi � pjk2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑K

n¼1 ðpi;n � pj;nÞ2
q

between any two points pi and pj closely

approximates DðOi;OjÞ.
FastMap creates a K-dimensional Euclidean embedding of the complex objects

in O, for a user-specified value of K. In the first iteration, FastMap heuristically
identifies the farthest pair of objects Oa and Ob in linear time. Once Oa and Ob are
determined, every other object Oi defines a triangle with sides of lengths
dai ¼ DðOa;OiÞ, dab ¼ DðOa;ObÞ, and dib ¼ DðOi;ObÞ (Fig. 7). The side lengths of
the triangle define its entire geometry, and the projection of Oi onto the line OaOb
is given by

xi ¼ d2ai þ d2ab � d2ib
� �

= 2dab
� �

: ð2Þ

FastMap sets the first coordinate of pi, the embedding of Oi, equal to xi. In the
subsequent K− 1 iterations, FastMap computes the remaining K− 1 coordinates
of each object following the same procedure; however, the distance function is
adapted for each iteration. In the first iteration, the coordinates of Oa and Ob are 0
and dab, respectively. Because these coordinates perfectly encode the true distance
between Oa and Ob, the rest of pa and pb’s coordinates should be identical for all
subsequent iterations. Intuitively, this means that the second iteration should
mimic the first one on a hyperplane that is perpendicular to the line OaOb (Fig. 8).
Although the hyperplane is never explicitly constructed, it conceptually implies
that the distance function for the second iteration should be changed for all i and j
in the following way:

DnewðO0
i;O

0
jÞ2 ¼ DðOi;OjÞ2 � ðxi � xjÞ2; ð3Þ

in which O0
i and O0

j are the projections of Oi and Oj, respectively, onto this
hyperplane, xi and xj are the coordinates of Oi and Oj from the previous iteration,
respectively, and Dnew( ⋅ , ⋅ ) is the new distance function. The distance function is
recursively updated according to Eq. (3) at the beginning of each of the K− 1
iterations that follow the first.

Selecting reference objects. As described before, in each of the K iterations,
FastMap heuristically finds the farthest pair of objects according to the distance
function defined for that iteration. These objects are called pivots and are stored as
reference objects. There are exactly 2K reference objects in our implementation
because we prohibit any object from serving as a reference object more than once;
however, this restriction is not strictly necessary. Technically, finding the farthest

Fig. 7 "Cosine law” employed by FastMap. Shows the “cosine law”
projection in a triangle.
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pair of objects in any iteration takes O(N2) time. However, FastMap uses a linear-
time “pivot changing” heuristic18 to efficiently and effectively identify a pair of
objects Oa and Ob that is very often the farthest pair. It does this by initially
choosing a random object Ob and then choosing Oa to be the farthest object away
from Ob. It then reassigns Ob to be the farthest object away from Oa.

In our adaptation of FastMap as a component of FastMapSVM, we require the
farthest pair of objects Oa and Ob in each iteration to be of opposite classes. This
maximizes the discriminatory power of the downstream SVM classifier. We achieve
this requirement by implementing a minor modification of the pivot changing
heuristic: We initially choose a random object Ob. We then choose Oa to be the
farthest object away from Ob and of the opposite class. We finally reassign Ob to be
the farthest object away from Oa and of the opposite class. In each iteration, all
previously used reference objects are excluded from consideration when selecting
the pivots.

For a test object not seen before, its Euclidean coordinates in the K-dimensional
embedding can be computed by using only its distances to the reference objects.
This is based on the reasonable assumption that the new test object would not
preclude the stored reference objects from being pivots if the K-dimensional
Euclidean embedding was recomputed along with the new test object. In any case,
the assumption is not strictly required since the stored reference objects are close to
being the farthest pairs.

Choosing the distance function D. The distance function should yield non-
negative values for all pairs of objects and 0 for identical objects. We can use a
variety of distance functions, such as the Wasserstein distance, the Jensen-Shannon
divergence, or the Kullback-Leibler divergence. We can also use more domain-
specific knowledge in the distance function, as described below.

In the Earthquake Science community, the normalized cross-correlation
operator, denoted here by ⋆, is popularly used to measure similarity between two
waveforms. For two zero-mean, single-component seismograms Oi and Oj with
lengths ni and nj, respectively, and starting with index 0, the normalized cross-
correlation is defined with respect to a lag τ as follows:

ðOi ? OjÞ½τ�≜
1

σ iσ j
∑
ni�1

m¼0
Oi½m�bOj½mþ ‘� τ�; ð4Þ

in which, without loss of generality, we assume that ni ≥ nj. σi and σj are the standard
deviations of Oi and Oj, respectively. Moreover, ℓ and bOj are defined as follows:

‘≜
nj � nj ðmod2Þ

2
� ni ðmod2Þ� �

1� nj ðmod2Þ
� �

ð5Þ

and

bOj½m�≜ Oj½m� if 0 ≤m<nj
0 otherwise

	
: ð6Þ

The quantity ℓ in Eq. (5) is defined as a subtraction. The first term is approximately
half of nj. The second term is 0 or 1 depending on whether ni and nj are odd or even.
Therefore, ℓ measures about half the length of the shorter waveform and ensures at

least 50 % overlap between the two waveforms for computing the normalized cross-
correlation at any τ (Fig. 9).

Equipped with this knowledge, we first define the following distance function
that is appropriate for waveforms with a single component:

DðOi;OjÞ≜1� max
0≤ τ ≤ ni�1

ðOi ? OjÞ½τ�



 


: ð7Þ

Based on this, we define the following distance function that is appropriate for
waveforms with L components:

DðOi;OjÞ≜1�
1
L

max
0≤ τ ≤ ni�1

∑
L

l¼1
ðOl

i ? O
l
jÞ½τ�










: ð8Þ

Here, each component Ol
i of Oi, or O

l
j of Oj, is a channel representing a one-

dimensional data stream. A channel is associated with a single standalone sensor or
a single sensor in a multi-sensor array.

We use the distance function defined in Eq. (8) with L= 3 for 3C seismograms.
Our choice is motivated by the extensive use of similar equations in Earthquake
Science to detect earthquakes using matched filters13–16. We will investigate other
distance functions in future work.

Enabling SVMs and Kernel methods. SVMs are particularly good for classifica-
tion tasks. When combined with kernel functions, they recognize and represent
complex nonlinear classification boundaries very elegantly22. Moreover, soft-
margin SVMs with kernel functions23 can be used to recognize both outliers and
inherent nonlinearities in the data. While the SVM machinery is very effective, it
requires the objects in the classification task to be represented as points in a
Euclidean space. Often, it is very difficult to represent complex objects like seis-
mograms as precise geometric points without introducing inaccuracy or losing
domain-specific representational features. In such cases, NNs have been more
effective than SVMs. FastMapSVM revitalizes the SVM technology for classifying
complex objects by leveraging the following observation: Although it may be hard
to precisely describe complex objects as geometric points, it is often relatively easy
to precisely compute the distance between any two of them. FastMapSVM uses the
distance function to construct a low-dimensional Euclidean embedding of the
objects. It then invokes the full power of SVMs. The low-dimensional Euclidean
embedding also facilitates a perspicuous visualization of the classification
boundaries.

Implementing FastMapSVM. We have implemented FastMapSVM and have
made it publicly accessible in a Python package available at: https://github.com/
malcolmw/FastMapSVM. Our package uses the cupy package24 to compute the
distance function in batches on a GPU. Our code also runs on CPU using Python’s
built-in multiprocessing module to accelerate distance function executions.
FastMapSVM requires as input (1) the labeled train data set, (2) the distance
function, (3) the dimensionality of the Euclidean embedding, and (4) a location to
store the resulting trained model. We use the thundersvm package25 to accel-
erate SVM computations on GPUs.

Training deep learning models. To train the EQTransformer and CRED models,
we used 80% of the train data set to adjust the model weights via back propagation
and reserved the other 20% for model validation. We trained the models from
scratch using the SeisBench10 framework for a maximum of 128 epochs using the
Adam optimizer26 with a learning rate of 0.001, and we stopped training if the
validation loss failed to decrease for 8 consecutive epochs. Train labels are defined
by a boxcar equal to 0 everywhere except between tP and tP+ 1.4 ⋅ (tS− tP), in
which it is equal to 1, where tP and tS are the P- and S-wave arrival times registered

Fig. 9 Schematic illustration of some quantities in Eq. (4). Shows the
alignment of a longer waveform in orange with a shorter waveform in blue
at the first step in the normalized cross-correlation procedure (τ= 0). The
quantity ℓ measures about half the length of the shorter waveform.

Fig. 8 Hyperplane projection employed conceptually by FastMap. Shows
the projection onto a hyperplane that is perpendicular to OaOb.
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for a single event in STEAD. We train both models using the binary cross-entropy
loss function:

Lθ y;by� � ¼ � 1
N

∑
N

i¼1
yi � log byi� �þ 1� yi

� � � log 1� byi� �
; ð9Þ

where yi is the label on the ith train sample and byi is the predicted probability of the
sample being labeled yi. Note that the loss function we use to train EQTransformer
is insensitive to the model outputs for identifying phases; we train it to only detect
earthquakes.

Data availability
STEAD data are publicly available at: https://github.com/smousavi05/STEAD. Ridgecrest
data are publicly available at: https://scedc.caltech.edu.

Code availability
Our implementation of FastMapSVM is publicly available at: https://github.com/
malcolmw/FastMapSVM.
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