
HDF5eis: A storage and input/output solution for big multidimensional
time series data from environmental sensors

Malcolm C. A. White1, Zhendong Zhang1, Tong Bai1, Hongrui Qiu1, Hilary Chang1, and Nori
Nakata1

ABSTRACT

Modern high-performance computing (HPC) tasks over-
whelm conventional geophysical data formats. We describe
a new data schema called HDF5eis (read H-D-F-size) for
handling big multidimensional time series data from environ-
mental sensors in HPC applications and implement a freely
available Python application programming interface (API) for
building and processing HDF5eis files. HDF5eis augments
the popular Hierarchical Data Format 5 with a minimal set
of additional conventions that facilitate fast and flexible data
input and output protocols for regularly sampled (in time)
data with any number of dimensions. HDF5eis supports ar-
bitrary ancillary data (e.g., metadata) storage in columnar for-
mat or as UTF-8 encoded byte streams alongside time series
data. Our HDF5eis API enables simple and efficient access to
big data sets distributed across a potentially large number of
small heterogeneous files through a single point of access.
HDF5eis outperforms conventional seismic data formats by
up to two orders of magnitude in terms of random read access
times. We contribute HDF5eis as an operational tool and an
experimental draft proposal that will help establish the next
generation of data standards in the earth sciences.

INTRODUCTION

Seismology is a data-driven science, and the recent emergence
within the earthquake seismology community of so-called large-N
recording paradigms, such as distributed acoustic sensing (DAS) (e.g.,
Lindsey et al., 2019) and nodal geophone arrays (e.g., Lin et al., 2013;

Ben-Zion et al., 2015), has simultaneously created new opportunities
for discovery and inundated researchers with a glut of data. At the
same time, exploration seismologists are increasingly interested in
continuous recordings from the same dense recording technology
for applications such as monitoring microseismicity during hydraulic
fracturing treatments of unconventional hydrocarbon reservoirs (e.g.,
Li and van der Baan, 2021). New recording paradigms challenge
the traditional distinctions between the conventions for acquiring,
exchanging, archiving, and processing seismic data historically asso-
ciated with either earthquake (passive source) or exploration (active
source) seismology. Whereas earthquake seismologists are accus-
tomed to data recorded by a relatively small number of sensors (small
N) over a long period of time (large T), exploration seismologists are
accustomed to the exact opposite: data recorded by a large number of
sensors (largeN) over a short period of time (small T). With continuous
recordings from dense acquisition systems becoming increasingly
commonplace, large-N, large-T data are posed to become the status
quo in the era of “Big Data Seismology” (Arrowsmith et al., 2022).
Many of the specialized data formats at the core of seismological

research today, such as (mini)SEED (Ahern et al., 2014), SAC
(Goldstein et al., 2003; Goldstein and Snoke, 2005), SEG-Y (Barry
et al., 1975), and SEG-D (Barry et al., 1975; Allen et al., 1994), origi-
nated in the 1970s and the 1980s following the advent of digital com-
puting. Despite the modifications and revisions that have been made
to the original format definitions, modern high-performance comput-
ing (HPC) tasks strain these conventional formats far beyond their
intended uses. Data input/output (I/O) operations on conventional data
formats for data-hungry processing procedures, such as training deep
learning models (e.g., Ross et al., 2018; Zhu and Beroza, 2018;
Mousavi et al., 2020) or the massive cross-correlation calculations
necessary for seismic interferometry (e.g., Wapenaar et al., 2010a,
2010b) and matched-filter processing (e.g., Gibbons and Ringdal,
2006; Shelly et al., 2016; Ross et al., 2019; Shelly, 2020), can quickly

Peer-reviewed code related to this article can be found at this paper’s Supplemental Materials link.
Manuscript received by the Editor 8 July 2022; revised manuscript received 19 December 2022; published ahead of production 23 January 2023; published

online 12 April 2023.
1Massachusetts Institute of Technology, Department of Earth, Atmospheric and Planetary Sciences, Cambridge, Massachusetts, USA. E-mail: malcolmw@

mit.edu (corresponding author); zhendong.zhang@kaust.edu.sa; tbai@mines.edu; hongruiq@mit.edu; hilarych@mit.edu; nnakata@mit.edu.
© 2023 Society of Exploration Geophysicists. All rights reserved.

F29

GEOPHYSICS, VOL. 88, NO. 3 (MAY-JUNE 2023); P. F29–F38, 5 FIGS., 2 TABLES.
10.1190/GEO2022-0448.1

D
ow

nl
oa

de
d

04
/1

1/
23

 to
 1

8.
10

.8
6.

10
6.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
S

E
G

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/p
ag

e/
po

lic
ie

s/
te

rm
s

D
O

I:1
0.

11
90

/g
eo

20
22

-0
44

8.
1

http://crossmark.crossref.org/dialog/?doi=10.1190%2Fgeo2022-0448.1&domain=pdf&date_stamp=2023-04-12

overwhelm computational infrastructure. Although each of these con-
ventional formats offers critical functionality for particular tasks (e.g.,
acquiring real-time data in the field and archiving data with standard-
ized metadata), seismologists need new formats if they wish to reduce
the time needed to extract physical insights from large data sets.
This progression toward bigger data and more intensive computing

is part of a much broader trend in science and society, which means
that seismologists are fortunately not facing this technological devel-
opment alone. Data scientists labor continuously to develop tools for
effectively handling the increasing volume and variety of data. Such
tools must be optimized to handle large volumes of data and flexible to
handle a wide variety of data. However, optimization and flexibility
often are opposed to one another, and an appropriate balance between
them must be found (Figure 1). The Hierarchical Data Format 5
(HDF5) (The HDF Group, 1997–2022) is a prominent solution strik-
ing this balance for scientific data, although its applications are by no
means restricted to scientific data. The seismological community has
already leveraged the HDF5 in specialized formats such as IRIS PASS-
CAL’s PH5 format (Hess et al., 2017) and the Adaptable Seismic Data
Format (ASDF) (Krischer et al., 2016), as has the broader earth science
community in formats such as netCDF (Unidata, 2016) and NASA
Earth Observatory System’s Hierarchical Data Format - Earth Observ-
ing System (HDF-EOS) (Habermann, 2015). However, PH5, netCDF,
and HDF-EOS are primarily intended for exchanging and archiving
data. Although the ASDF is intended for HPC applications, design
decisions associated with its definition (a detailed description of these
is deferred to the “Motivation” section) limit its effectiveness in the
analysis of multidimensional large-N, large-T data.
In this paper, we present a new data schema called HDF5eis

(read H-D-F-size) that is intended to mitigate some of the limita-
tions of the formats alluded to previously. HDF5eis is an HDF5-
based solution for handling big multidimensional time series data
from environmental sensors in HPC applications. Our goal is to de-
velop a workhorse for I/O intensive computing in desktop and HPC
cluster environments with an application programming interface
(API) simple enough for novice programmers to learn quickly.
We present HDF5eis, not as a final, one-size-fits-all solution, but
rather an experimental draft proposal intended to generate discus-

sion of how existing technology might be leveraged by new data
format standards in the earth sciences community. HDF5eis is
mainly geared toward seismic data; however, we aim to keep it
flexible enough to accommodate generic time series data from any
environmental sensor. HDF5eis refines and improves upon some of
the concepts introduced primarily by the ASDF.
This paper is structured as follows: after elaborating on our mo-

tivations for developing HDF5eis, we specify our design specifica-
tions, the schema definition, and our implementation of a Python
API for building and processing HDF5eis files. Then, we describe
a hypothetical experiment that demonstrates the usefulness of
HDF5eis and compare its performance against conventional seismic
formats using simulated data from a hypothetical survey comprising
multiple acquisition systems. We conclude with a discussion of the
merits and demerits of HDF5eis.

MOTIVATION

Although it may be clear that a key feature setting HDF5eis apart
from conventional seismic data formats is that it leverages the HDF5
architecture, one may well wonder what sets it apart from the more
comparable PH5 and ASDF, which also leverage the HDF5. Indeed
HDF5eis is inspired by the ASDF in many ways and shares many
similarities with it. Because PH5 is primarily designed for archiving
and exchanging standardized metadata and highly structured array
data recorded during temporary deployments — in fact, data often
are converted from PH5 to SEG-Y for analysis — we focus the
remainder of this section on what differentiates HDF5eis from the
ASDF. Next, we outline key lessons learned from the ASDF and
how we improve upon those aspects.
First and most importantly, the atomic storage unit for regularly

sampled time series data in the ASDF is a 1D data array — each 1D
array is considered a discrete data object representing a single-chan-
nel time series. Although many contiguous data channels can be
stored in a single ASDF file, each one is stored as a separate data
object. This severely limits the efficiency of certain access patterns
to multidimensional array data. Consider, for example, reading a
short segment of data recorded by a DAS fiber with 1000 channels.
Because the ASDF stores each data channel in an independent 1D
array, contiguous channels are liable to be stored on distant disk
sectors, which increases the amount of time spent seeking the rel-
evant data to fulfill multichannel data queries. However, if those
data were stored contiguously on disk in a single 2D array, I/O prim-
itives could be used much more efficiently when reading data. The
HDF5’s “hyperslab selection” functionality provides a seamless
mechanism for efficiently accessing contiguous data volumes in
such a scenario. A secondary side effect of atomizing data at such
a fine level of granularity is that ASDF files bloat with excessive
metadata maintained by the HDF5, which hinders performance.
This is only a problem, however, when tens of thousands of data
segments are stored in a single file. Multidimensional arrays are
supported by the ASDF as so-called “auxiliary data”, but these
are — as the name implies — secondary data structures rather
than the emphasis of the format. HDF5eis makes multidimensional
arrays the atomic storage unit around which the schema is defined.
Second, to retrieve data from an ASDF file, one must exhaustively

traverse every data object in the file and parse the associated string
identifiers to check for query matches. This is fine in principle but
becomes prohibitively slow in practice, particularly when using the
Python API to access data in a file with highly fragmented data

Figure 1. The Yin and Yang of data formatting: to gain widespread
use, a data form must be sufficiently optimized for a particular set of
tasks while simultaneously remaining flexible. These two objectives
often are opposed to one another and must be held in proper balance.

F30 White et al.

D
ow

nl
oa

de
d

04
/1

1/
23

 to
 1

8.
10

.8
6.

10
6.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
S

E
G

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/p
ag

e/
po

lic
ie

s/
te

rm
s

D
O

I:1
0.

11
90

/g
eo

20
22

-0
44

8.
1

(e.g., a large number of channels or discontinuous/gappy data). This
problem is exacerbated by the highly granular structure of the ASDF
files. HDF5eis mitigates this inefficiency by (1) enabling the grouping
of coordinate data channels and (2) maintaining a tabular index of file
contents, which enables efficient regular-expression parsing to rapidly
fulfill queries. We elaborate on this indexing feature subsequently.
Finally, the ASDF operates on each file independently. Data can

thus be either (1) stored in a single large file — this option provides
a convenient access pattern, but the large files can become unwieldy
— or (2) stored in many relatively small files — this option yields
manageable file sizes but increases the user’s bookkeeping burden.
However, HDF5eis leverages HDF5’s hierarchical design and external
linking functionality to enable external links to an arbitrary number of
files from a single master file. This master file serves as a convenient,
single point of access to data distributed across a potentially large num-
ber of files. This helps maintain manageable file sizes for large data
sets without sacrificing the convenience of having a single point of
access. Furthermore, a single data file can be linked to multiple master
files, enabling users to conveniently create multiple virtual data sets
with different subsets of data without having to copy any of them.
One salient novelty of the ASDF that we retain and extend is the

notion of integrating existing formats for storing ancillary data along-
side primitive time series data. The ASDF implements this feature
by defining storage structures for standard formats based on the Ex-
tended Markup Language (XML), namely, QuakeML (Schorlemmer
et al., 2011), StationXML, and Seis-Prov (Krischer et al., 2015) for
storing earthquake catalog data, network metadata, and data prov-
enance, respectively. However, these formats are particular to the
earthquake seismology domain and are not amenable to the broad
spectrum of the alternative data domains in the earth sciences. We
extend this feature to enable the storage of data in a columnar format
and any UTF-8 encoded byte stream. Supporting columnar data pro-
vides a natural interface to the “DataFrame” structures that are the
cornerstone of powerful data science software such as pandas for
Python, DataFrames.jl for Julia, and data.frame in R, which
are well suited for operating on relational data and support optimized
data queries, data transformations, and statistical analyses. Support-
ing arbitrary UTF-8 encoded data implies that any text-based format,
such as simple text README data and derivatives of XML or JSON,
can be integrated into HDF5eis files.

DESIGN SPECIFICATIONS

In service of our primary objective — i.e., to efficiently handle
big multidimensional time series data from environmental sensors
in HPC applications — we design HDF5eis to

1) store primitive time series data with arbitrary dimensionality,
2) store arbitrary ancillary data in a columnar format or as UTF-8

encoded byte streams,
3) provide a single point of access to diverse data distributed

across many files, and
4) simultaneously leverage existing technology and minimize

external dependencies.

It should be noted that the base HDF5 API satisfies our design
specifications. However, by imposing a minimal set of additional
conventions, we can significantly increase its efficiency for a par-
ticular class of tasks. By this, we do not mean that we will make
HDF5 itself more efficient. Rather, we aim to define a minimal set

of additional structures that will make the HDF5’s efficiency more
accessible to earth scientists. Defining and imposing a set of con-
ventions on the HDF5 enables the implementation of universal I/O
protocols and reusable, shareable code that will help earth scientists
shift their focus from the technicalities of data management to the
scientific research problems to which the data pertain.
By leveraging the HDF5 software stack, HDF5eis freely inherits

1) various lossless, in-flight compression filters (e.g., GZIP,
LZF, and SZIP);

2) an interface for defining custom compression filters (e.g.,
STEIM and STEIM2);

3) advanced data indexing and memory caching algorithms for
accelerating I/O operations;

4) seamless functionality for integrating structured array data
with arbitrary dimensionality; and

5) hierarchical data structures that permit symbolic links to
external data objects.

SCHEMA DEFINITION

Having outlined our motivations and design specifications, we
now move to the HDF5eis schema definition. We wish to make
a distinction at this point between the schema definition and imple-
mentation. The schema definition is a set of rules defining which
data structures are permissible, whereas its implementation is a set
of software for tangibly manifesting and manipulating those struc-
tures. This section outlines the HDF5eis schema definition. All
computational variables in the following description take string val-
ues unless otherwise noted.
At the highest level, data in each HDF5eis file are separated

into three main HDF5 Group objects (groups): (1) /timeseries,
(2) /products, and (3) /metadata (Figure 2). The root group
possesses an HDF5 Attribute object (attribute) called __VERSION
which records the schema version of the file for control against fu-
ture schema revisions. The structure and function of each group are
elaborated on in a top-down fashion next.

The /timeseries group

Primitive time series data are stored in a nested hierarchy beneath the
/timeseries group. The HDF5 Data set object (data set) at the
terminus of each branch in the hierarchy stores a single, continuous
block of multidimensional time series data with fixed sampling inter-
vals along each dimension. These data sets can have any number of
dimensions; however, the time axis must be oriented along the last axis.
Each data set is addressed by a unique identifier formatted similar to
/timeseries/{tag}/__{start_time}Z__{end_time}Z
in which {tag} is a user-specified “tag” intended to differentiate col-
lections of data and {start_time} and {end_time} are the co-
ordinated universal time (UTC) times corresponding to the first and last
samples in the data block, respectively. The {start_time} and
{end_time} fields are formatted similar to %Y%m%dT%H:%M:%
S.%n (for string format specifications, see Table 1). Each data set also
is assigned an attribute with key sampling_rate and value equal to
the fixed temporal sampling rate of the time series as a floating point
number in units of samples per second (s−1).
The /timeseries group requires a nested data table under the

key __TS_INDEX that maintains an index of all other data sets in the
/timeseries group. Specifications for storing tabular data are

HDF5eis data schema F31

D
ow

nl
oa

de
d

04
/1

1/
23

 to
 1

8.
10

.8
6.

10
6.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
S

E
G

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/p
ag

e/
po

lic
ie

s/
te

rm
s

D
O

I:1
0.

11
90

/g
eo

20
22

-0
44

8.
1

a)

b)

Figure 2. Schematic overview of example HDF5eis file. (a) The basic hierarchical layout of file contents. (b) A more detailed pictorial
representation of file contents. Gray and blue containers represent the groups and data sets, respectively. Green rectangles represent the attrib-
utes.

F32 White et al.

D
ow

nl
oa

de
d

04
/1

1/
23

 to
 1

8.
10

.8
6.

10
6.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
S

E
G

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/p
ag

e/
po

lic
ie

s/
te

rm
s

D
O

I:1
0.

11
90

/g
eo

20
22

-0
44

8.
1

discussed in the next subsection. For each data set in the
/timeseries group, there must be a corresponding row in the
__TS_INDEX table with tag, start_time, end_time, sam-
pling_rate, and npts columns. The tag, start_time,
end_time, and sampling_rate columns record the variables
by the same name in the preceding paragraph. The npts column
must be the integer number of time samples comprising the data
set. This __TS_INDEX table can be quickly parsed to find the data
sets needed to fulfill a user query. No other tables are permitted in the
/timeseries group.

The /products and /metadata groups

The /products and /metadata groups are fundamentally dif-
ferent from the /timeseries group in that the former provide stor-
age and I/O for tabular data comprising columnar data with potentially
mixed data types and UTF-8 encoded byte streams, whereas the latter
provides storage and I/O for structured multidimensional arrays
of time series data with uniform type. The difference between the
/products and /metadata groups is merely an organizational
convention: /products is intended for data products that are
derived from or otherwise related to the data in /timeseries
(e.g., earthquake catalog data), whereas /metadata is intended
for static metadata associated with /timeseries data (e.g., record-
ing geometry, instrument responses, and data provenance).

Tabular data

Tabular data are organized in groups (one per table) nested within
the /products and /metadata groups (with the exception of
the /timeseries/__TS__INDEX table) and addressed by
/{parent}/{key} in which {parent} is either /products or
/metadata, as appropriate, and {key} is a user-specified “key”
value. To differentiate tabular data from UTF-8 encoded byte streams,
groups corresponding to tabular data are each assigned an attribute with
key __TYPE and value TABLE. Data sets corresponding to UTF-8
encoded byte streams, on the other hand, are each assigned a similar
attribute with the value UTF-8. Each column within a table is stored in
an independent data set addressed by /{parent}/{key}/{col-
umn}, in which {parent} and {key} are as previously described
and {column} is the column name. Each column may have a differ-
ent data type, but data within a single column must be of homogeneous
type, and all columns within a single table must have the same length.
Valid data types for columnar data are numeric types (integers and
floats), character strings, and timestamp or “datetime” values.
Because the HDF5 backend does not support a native datetime

data type, special care must be taken when storing tabular data with

columns of datetime values. HDF5eis stores datetime data as 64 bit
integers representing the number of nanoseconds since 1 January
1970 00:00:00 (UTC). Every data set nested within a group for
which the __TYPE Attribute is equal to TABLE requires an __IS
_UTC_DATETIME64 attribute with a boolean value True or
False. This flag indicates how to properly interpret (and poten-
tially convert) the data at read time.
Columnar data comprising character strings must similarly be

handled carefully. Just as every data set nested within a group for
which the __TYPE attribute is equal to TABLE requires an
__IS_UTC_DATETIME64 attribute, so too do they require a similar
__IS_UTF-8 attribute. Character strings are stored as raw UTF-8
encoded bytes with a sufficient number of bytes per string to re-
present the longest string in the column. Setting the __IS_UTF-
8 attribute to True indicates that these bytes should be appropriately
decoded at read time.

UTF-8 encoded data

UTF-8 encoded data can be stored in a columnar format when they
constitute part of a data table (e.g., alphanumeric station IDs in a net-
work geometry metadata table) or they can be stored as individual byte
streams of arbitrary length. Each byte stream is stored in a separate
data set, which is addressed by /{parent}/{key} in which
/{parent} and {key} are as described for tabular data. Also as
described for tabular data, each such data set must have a TYPE attrib-
ute with the value UTF-8. The rationale for permitting arbitrary UTF-
8 encoded data is to enable existing formats to be leveraged. For ex-
ample, the StationXML, QuakeML (Schorlemmer et al., 2011), and
SEIS-PROV (Krischer et al., 2015) standards can be used to keep re-
cords of station metadata, seismic events, and data provenance, respec-
tively, as is done in the ASDF. Alternatively, any other text-based
format, even a simple text README, can be stored as a UTF-8
encoded byte stream.
Groups corresponding to tabular data and data sets corresponding

to UTF-8 encoded byte streams each possess a __FORMAT attribute
that records the format of the stored data. As examples, setting
__FORMAT to CSS3.1-origin could be used to indicate that
a table records seismic event origin data using the Center for Seis-
mological Studies CSS3.1 database schema, or STATIONXML
might be used to indicate that a UTF-8 encoded byte stream can
be parsed using the STATIONXML protocol.

API IMPLEMENTATION

We implement a publicly available Python API to build and process
HDF5eis files. Although HDF5eis’s schema definition depends only

Table 1. String format specifications for naming data sets.

Formatter Meaning Range Example

%Y Four digit year 0–9999 2022

%m Zero-padded, two digit month 1–12 03

%d Zero-padded, two digit day of the month 1–31 27

%H Zero-padded, two digit hour of the day 0–23 14

%M Zero-padded, two digit minute of the hour 0–59 19

%S Zero-padded, two digit second of the minute 0–59 01

%n Zero-padded, nine digit nanosecond of the second 0–999999999 030900120

HDF5eis data schema F33

D
ow

nl
oa

de
d

04
/1

1/
23

 to
 1

8.
10

.8
6.

10
6.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
S

E
G

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/p
ag

e/
po

lic
ie

s/
te

rm
s

D
O

I:1
0.

11
90

/g
eo

20
22

-0
44

8.
1

on the HDF5, the Python API that we implement introduces a few
additional dependencies. We use the h5py API to interact directly
with the underlying HDF5 files. In addition to h5py, we use the
pandas package (McKinney, 2010) to manipulate tabular data in
memory. In particular, we manipulate the __TS_INDEX table using
pandas to rapidly fulfill time series queries — specifying the tag
and start and end time of the desired samples is sufficient to determine
precisely which data set(s) contain them and at which offsets they
reside within their respective data set(s). Our API also serves tabular
data from HDF5eis files as pandas.DataFrame objects. Finally,
we use the numpy library (Harris et al., 2020) to manipulate time
series data in memory and perform various other basic operations.
These three dependencies (h5py, pandas, and numpy) are mature,
stable packages that are unlikely to introduce breaking changes in the
near future. Our API is most easily learned through the tutorials that
are included in the distribution.
Because HDF5eis is designed to maximize flexibility, the mapping

between existing formats and HDF5eis is nonunique. Multiple valid
HDF5eis structures could be implemented to represent data in an
existing format, and the optimal file structure will depend on the in-
tended use case. The nonuniqueness of this mapping from conven-
tional data formats to HDF5eis inhibits us from implementing a
simple program for converting data. HDF5eis users, at least those
creating HDF5eis files, need to have some understanding of the in-
ternal HDF5eis structures to convert data from existing formats.
Although it is a fairly straightforward exercise, users must write a
script to convert their data to HDF5eis. To facilitate this process
and demonstrate additional nuances of the API not covered in this
paper, we include a few tutorials in the distribution.

EXAMPLE USE CASE

To illustrate the advantages of implementing a multidimensional
array data structure and basic features of our API, we now consider
a hypothetical experiment monitoring microseismic activity during a
hydraulic fracturing treatment. In this section, we describe the exper-
imental design and basic structure for handling the data using
HDF5eis. In the “Comparison against alternative formats” section,
we simulate a small subset of the data that would be recorded during
such an experiment and compare the performance of various data
formats for handling the data.
The data acquisition system for our hypothetical experiment com-

prises four separate components: (1) a downhole DAS fiber, (2) a
downhole distributed temperature sensing (DTS) fiber, (3) a 1D array
of downhole geophones, and (4) a 2D array of surface geophones.

Data are acquired from all four of these components continuously
over a 30 day period. The DAS and DTS fibers record 1024 channels
of data. The DAS data are sampled at a rate of 4000 s−1, whereas
DTS data are sampled at a rate of 1 min−1. The downhole geophone
array comprises 24 3C sensors sampled at a rate of 500 s−1. The 2D
array of surface geophones comprises a 16 × 16 array of 3C sensors
also sampled at a rate of 500 s−1. Data recorded in this configuration
and stored with 32 bit floats will require 43 TB of storage (Table 2).
Organizing storage for such a data set is a significant technical chal-
lenge, but this challenge can be handled efficiently using HDF5eis as
follows.
DAS data are amenable to being stored on disk using 2D arrays

with shape (nchannels and npts) in which nchannels is the
number of channels being recorded and npts is the number of tem-
poral samples. Allocating one file for every 5 min of uncompressed
DAS data requires 8640 files consuming approximately 4.6 GB each,
which is manageable on any modern computer with enough storage.
It also is important to consider the “chunk layout” and compression
algorithm when creating HDF5eis files, as they will significantly im-
pact storage and I/O performance, but both of these aspects are op-
tional and a discussion of them is beyond the scope of this thought
experiment. DAS data can be associated with the tag DAS.
DTS data also are amenable to being stored on disk using 2D

arrays with shape (nchannels and npts). Because DTS data
are sampled infrequently, they amount to less than 1 GB of data
and can easily be stored in a single file. DTS data can be associated
with the tag DTS.
Downhole geophone data are amenable to being stored on disk us-

ing 3D arrays with shape (nsensors, ncomponents, and npts)
in which nsensors = 24 is the number of recording sensors and
ncomponents = 3 is the number of components per sensor. Allo-
cating one file for every 6 h of downhole geophone data requires 120
files consuming approximately 2.9 GB of storage each. Downhole
geophone data can be associated with tag geophones/downhole.
Surface geophone data are amenable to being stored on disk using

4D arrays with shape (nrows, ncolumns, ncomponents, and
npts) in which nrows = ncolumns = 16 are the number of sen-
sor rows and columns, respectively. Allocating one file for every
30 min of surface geophone data requires 1440 files consuming ap-
proximately 2.6 GB of storage each. Surface geophone data can be
associated with the tag geophones/surface.
All 10,201 files created in the preceding configuration can be

linked to and subsequently accessed through a single master file
using our Python API. Array geometry also can be stored in tabular
format under the /metadata group. The user no longer needs to
maintain a record of the location of each individual file, even if they
are distributed across multiple disks on a network file system. Fur-
thermore, the user can request data spanning multiple files without
any knowledge of which samples come from which files; the nec-
essary bookkeeping is done by the API. The structure of the result-
ant master file may look as shown in Figure 3.
Not only do such data structures simplify bookkeeping for such

large data sets but also they enable efficient I/O for many common
access patterns via hyperslab selection (also known as array slic-
ing). Data subsets specified by start and end indices and stride
length along each storage dimension can be extracted in a single
call to the HDF5 library. For instance, each of the following subsets
of data can be extracted in a single API call that leverages the HDF5
hyperslab selection functionality for efficient I/O (Figure 4):

Table 2. Summary of data acquisition parameters in a
hypothetical 30 day experiment monitoring microseismicity
during hydraulic fracturing treatment.

Component
Number of
channels

Sampling
rate (s−1) Data size

DAS 1024 4000 38.62 TB

DTS 1024 60−1 168.8 MB

Downhole
geophones

24 × 3 ¼ 72 500 347.6 GB

Surface geophones 16 × 16 × 3 ¼ 768 500 3.621 TB

All 2888 NA 42.58 TB

F34 White et al.

D
ow

nl
oa

de
d

04
/1

1/
23

 to
 1

8.
10

.8
6.

10
6.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
S

E
G

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/p
ag

e/
po

lic
ie

s/
te

rm
s

D
O

I:1
0.

11
90

/g
eo

20
22

-0
44

8.
1

1) DAS data from all channels.
2) DTS data from channels 256 to 511.
3) Vertical-component data from downhole geophones 8 to 11.
4) 3C data from every second geophone in row 12 of the sur-

face array.

These storage requirements are based on the assumption that data
are uncompressed; however, one may wish to compress the data.
HDF5eis inherits and exposes various compression algorithms,
which can be configured to suit one’s particular needs. For example,
the GZIP compression algorithm can be used with compression
level 9 (maximum compression) for long-term archival or data ex-
change purposes. Entire files can be retrieved and decompressed for
processing as needed. Alternatively, one may compress the data
with a more moderate compression level and decompress it in an
on-the-fly manner. In this scenario, small chunks of compressed
data can be transmitted from a network file system to a processing
node where it can be decompressed for processing. This only re-
quires decompressing the requested chunks of data (not the entire
file) and can be optimized to balance demands on storage, network,
and compute resources.

COMPARISON AGAINST ALTERNATIVE
FORMATS

In this section, we describe results from two experiments de-
signed to assess the relative performance of HDF5eis against
SEG-Y, miniSEED, and the ASDF. SEG-Y is chosen as a represen-
tative of exploration seismic data formats. MiniSEED is chosen as a
representative of earthquake seismic data formats. The ASDF is
chosen as a comparable format to HDF5eis because it also leverages
the HDF5. The code for these experiments is included as a Jupyter
Notebook in the supplemental S1 for readers who wish to validate
these results. The segyio (Equinor ASA, 2022), obspy
(Beyreuther et al., 2010), and pyasdf (Krischer et al., 2016) Py-
thon packages are used to read and write SEG-Y, miniSEED, and
the ASDF data, respectively.
The first experiment is designed to simulate random reads from

the DAS data set described in the previous section. We generate
random sample values to simulate real data recorded by 1024 chan-
nels with a 4000 s−1 sampling rate over a 30 min period. Data are
stored in an uncompressed 32 bit floating point representation for
all formats. HDF5eis data are stored in a single file per 5 min period
as described in the previous section. SEG-Y data also are stored in a
single file per 5 min period. MiniSEED data are stored in one file
per channel. All the ASDF data are stored in a single file. We record
the average amount of time required to read random segments
of data.
At each realization, we read data from a random subset of sequen-

tial channels between random start and end times. The number and
position of the channels, the start time, and the duration of the data
read are all drawn from uniform random distributions. The duration
of data read at each iteration is between 0.5 and 2 s. The same random
subset is read from each data format and the corresponding read times
are recorded for 1000 iterations. Figure 5a shows the read times in
multiples of the corresponding HDF5eis read time (values greater
than one indicate slower reads than HDF5eis, whereas values less
than one indicate faster reads). SEG-Y is substantially more efficient
than miniSEED and the ASDF, which is unsurprising given that
SEG-Y is intended for such large-N array data. The median relative

read time for SEG-Y, however, is 6.5 times that of HDF5eis. The
median relative read times for miniSEED and the ASDF are 22.9
and 40.6, respectively. HDF5eis is an order of magnitude faster than
miniSEED and the ASDF, and it achieves this performance with the
fewest lines of client code. Although high-level APIs could be de-
veloped to read data from other formats using similar amounts of
client code, pithy code is characteristic of HDF5eis because its multi-
dimensional array storage structure naturally leverages HDF5’s
hyperslab selection functionality. Notably, the ASDF is the slowest
of the formats. This is because of the first and second design features
outlined in the “Motivation” section.
The second experiment is designed to simulate random reads

from the data set recorded by the 2D array of geophones described
in the “Example use case” section. We again use random sample
values to simulate recorded data, this time for a 2D array of 3C
geophones with 16 rows, 16 columns, and a 500 s−1 sampling rate
over a 1 day period. MiniSEED and the ASDF data are stored in one
file per channel and a single file, respectively, as in the first experi-
ment. SEG-Y and HDF5eis data are stored in one file per 30 min
period.
At each realization, a random segment of data between 2 and 6 s

long is read from a random subset of rows, columns, and channels
starting at a random start time. As in the first experiment, all random
variables are drawn from uniform random distributions. Here, 1000
iterations are performed and the results are summarized in Figure 5b.
All median relative read times are again greater than one; however, in
this experiment, the median relative read time for SEG-Y is only 1.9.
The median relative read times for miniSEED and the ASDF are 105.1

Figure 3. The hierarchical structure of the master file for a hypo-
thetical multisystem survey (described in the “Example Use Case”
section) monitoring microseismicity during a hydraulic fracturing
treatment. The ellipses (: : :) nested under the /timeseries group re-
present the time series data.

HDF5eis data schema F35

D
ow

nl
oa

de
d

04
/1

1/
23

 to
 1

8.
10

.8
6.

10
6.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
S

E
G

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/p
ag

e/
po

lic
ie

s/
te

rm
s

D
O

I:1
0.

11
90

/g
eo

20
22

-0
44

8.
1

https://library.seg.org/doi/suppl/10.1190/GEO2022-0448.1/suppl_file/S1.code.zip

and 63.0, respectively. HDF5eis is nearly twice as fast as SEG-Y and
two full orders of magnitude faster than miniSEED in this context.

DISCUSSION

In this paper, we present a data schema, which we name HDF5eis,
for archiving, exchanging, and processing big multidimensional time
series data from environmental sensors in HPC applications using the
HDF5. We contribute it as (1) a functional tool and (2) an experimen-

tal draft proposal to provide a basis on which to discuss the merits and
demerits of existing technology and how they might be leveraged in
future data formats for the earth sciences. Although our focus is seis-
mic data, we recognize that time series data from many disciplines
within the earth sciences share similarities, and we have aimed to
accommodate a wide variety of data types by maintaining schema
flexibility. To promote interdisciplinary interoperability and collabo-
ration, standards for future data formats in the earth sciences should
be the product of intergenerational, interdisciplinary committees. In

contribution to such potential future efforts, we
now discuss the merits and demerits of HDF5eis.
First, HDF5eis inherits impressive I/O perfor-

mance from the highly optimized HDF5 library
(Figure 4). Because extensive effort has been in-
vested by the HDF Group in implementing and
optimizing advanced storage layout schemas,
memory caching algorithms, and data indexing
protocols, it is likely that only a highly skilled
team of data scientists will be able to improve
on these. Whereas conventional seismic data for-
mats rely on their own schemas and protocols,
future formats will benefit greatly from leverag-
ing advances made by data specialists.
Second, HDF5eis is flexible. In fact, its I/O per-

formance owes considerably to its flexibility. Sup-
porting arrays of arbitrary dimensionality enables
users to conform storage structures to the charac-
teristics of their specific data set. Such multidimen-
sional array structures also enable the efficient
retrieval of coordinate data channels via hyperslab
selection. Furthermore, because HDF5eis imple-
ments storage for columnar data and UTF-8 en-
coded byte streams, many existing data format
standards can be internally maintained. For exam-
ple, QuakeML (Schorlemmer et al., 2011) can be
used to store earthquake catalog data, and because

HDF5eis is independent of QuakeML, it is future-proof against
changes to the QuakeML schema. The same can be said of any analo-
gous format. Alternatively, one could store earthquake catalog data in
tabular format as part of a relational database. This flexibility and
interoperability with existing formats will reduce the overhead asso-
ciated with adapting software to operate on HDF5eis files.
Third, HDF5eis freely inherits multiple lossless, in-flight compres-

sion algorithms, and functionality to define custom filters. These en-
able the user to tailor the level of compression to their specific needs
and balance demands placed on the network, storage, and processing
resources. Users do not need to decompress an entire file when they
only need a small subset of its contents; however, users may choose
to heavily compress data files (e.g., for transfer or long-term, cold
storage) and decompress files wholesale for processing.
Fourth, HDF5eis files are self-describing and platform-indepen-

dent which makes them universally portable. A user in one compu-
tational environment will have no problem reading data written in
an entirely different environment. Moreover, HDF5eis files can be
manipulated in a wide variety of languages because HDF5 APIs
exist for many of them including C/C++, Fortran, Java, Python, Ju-
lia, and MATLAB. Although comparable tools to the HDF5 exist,
such as zarr and xarray, HDF5 is significantly more mature, has a
wide user base, and has APIs for the greatest number of languages.

Figure 4. Illustrative API syntax for efficiently reading various subsets of data from a hypo-
thetical multisystem survey (described in the “Example use case” section): (a) 1 s of DAS
data for all channels, (b) 1 h of DTS data for channels 256–511, (c) 10 s of vertical-
component data from downhole geophones 8 to 11, (d) 4 s of 3C data from every other
geophone in row 12 of the surface array, and (e) geometry metadata for DAS fiber.

Figure 5. Comparison of random read access times for representative
seismic data formats. (a) Results for simulated DAS data. (b) Results
for simulated 2D geophone array. Experimental designs are described
in the “Example Use Case” section. Read times are reported in multi-
ples of corresponding HDF5eis read time. Horizontal orange lines
represent the median relative read time. Boxes span the first and third
quartiles. Whisker lengths are 1.5 times the interquartile range. Out-
liers are shown as translucent black circles. The horizontal dashed
black line represents the HDF5eis read time, which is unity by def-
inition.

F36 White et al.

D
ow

nl
oa

de
d

04
/1

1/
23

 to
 1

8.
10

.8
6.

10
6.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
S

E
G

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/p
ag

e/
po

lic
ie

s/
te

rm
s

D
O

I:1
0.

11
90

/g
eo

20
22

-0
44

8.
1

Finally, the use of external links in HDF5eis minimizes the book-
keeping burden borne by the user. Users of our Python API can
create zero-copy virtual data sets and seamlessly read data across
file boundaries through a single point of access without worrying
about in which file samples reside. Users can simultaneously access
diverse ancillary data (e.g., metadata) through the same single point
of access using a unified programming interface. This allows users
to rise above the mundanities of data management and focus instead
on scientific research.
HDF5eis is not, however, without limitations.
First, HDF5eis is not cloud native, meaning that it is not opti-

mized for interacting with data on cloud resources. It is our opinion
that future data formats in the earth sciences should work at least as
well on the cloud as they do on a local workstation or computing
cluster. The highly scalable data service (HSDS) from the HDF
Group is one technology that could be leveraged in a cloud-native
version of HDF5eis. HSDS is designed to maximize interoperability
with the existing HDF5 data and libraries, which means that migrat-
ing to HSDS from the HDF5 would engender relatively little over-
head. However, this also means that HSDS design decisions are
influenced by noncloud-native technology, which may ultimately
detract from cloud performance. As cloud-computing paradigms
mature, so do the tools designed specifically for the cloud. Emerg-
ing cloud technologies, such as TileDB (Papadopoulos et al., 2016),
offer great promise for providing dyed-in-the-wool cloud-native
backend data formats that can be leveraged in the earth sciences.
Second, HDF5eis currently only supports the UTC time standard.

To be more broadly useful, formats for time series data from envi-
ronmental sensors should implement multiple time standards such
as mean solar time, atomic time, and GPS time. In addition to these,
elapsed time, representing the time elapsed since some arbitrary da-
tum, would be useful for storing data without an absolute time
frame, such as Green functions and (cross)correlograms, or data
for which the elapsed time is more important than the absolute time,
such as in typical exploration seismology. Adding support for these
time standards is fairly straightforward in principle and may be the
subject of future development, depending on user interest.
Third, HDF5eis only supports data sampled at regular time inter-

vals. Because many sensor types sample at irregular intervals, sup-
porting such data is important. Again, adding support for irregularly
sampled time series is fairly straightforward and may be the subject
of future development.
Finally, HDF5eis is not designed for real-time data acquisition

and may not be suitable in certain contexts. For instance, data pack-
ets transmitted by regional seismic networks cannot be assumed to
arrive in proper time order. Recording such data using HDF5eis,
particularly when gaps in data transmission occur, is likely to be
cumbersome and may produce inefficient data structures.

CONCLUSION

The HDF5 is a suitable substrate on which to build efficient and
flexible data formats for handling big multidimensional time series
data from environmental sensors in HPC applications. Implementing
a simple indexing protocol, as is done by HDF5eis, can yield superior
I/O performance in comparison with conventional seismic data for-
mats. The time required to extract physical insights from large data
sets can thus be effectively reduced when processing is I/O bound.
HDF5eis is a functional tool for simplifying complex access patterns
to diverse data in distributed computing environments. As data vol-

umes swell and cloud technology matures, data-driven research in the
earth sciences will increasingly demand data standards beyond the
scope of those that exist today. HDF5eis sheds needed light on
the path toward establishing standards for the next generation.

ACKNOWLEDGMENTS

The study was supported by the Southern California Earthquake
Center Award #22145 and the Japan Organization for Metals and
Energy Security.

DATA AND MATERIALS AVAILABILITY

No data have been required for this paper.

REFERENCES

Ahern, T. K., R. Casey, D. Barnes, R. Benson, and T. Knight, 2014, Seed
reference manual v2.4 : Incorporated Research Institutions for Seismol-
ogy (IRIS).

Allen, R., G. Crews, W. Guyton, C. A. McLemore, B. Peterson, C. S. Rapp,
L. Walker, L. R. Whigham, D. A. White, and G. Wood, 1994, Digital field
tape format standards — SEG-D, revision 1: Geophysics, 59, 668–684,
doi: 10.1190/1.1443626.

Arrowsmith, S. J., D. T. Trugman, J. MacCarthy, K. J. Bergen, D. Lumley,
and M. B. Magnani, 2022, Big data seismology: Reviews of Geophysics,
60, 1–55, doi: 10.1029/2021RG000769.

Barry, K. M., D. A. Cavers, and C. W. Kneale, 1975, Recommended stan-
dards for digital tape formats: Geophysics, 40, 344–352, doi: 10.1190/1
.1440530.

Ben-Zion, Y., F. L. Vernon, Y. Ozakin, D. Zigone, Z. E. Ross, H. Meng, M.
White, J. Reyes, D. Hollis, andM. Barklage, 2015, Basic data features and
results from a spatially dense seismic array on the San Jacinto fault zone:
Geophysical Journal International, 202, 370–380, doi: 10.1093/gji/
ggv142.

Beyreuther, M., R. Barsch, L. Krischer, T. Megies, Y. Behr, and J. Wasser-
mann, 2010, ObsPy: A Python toolbox for seismology: Seismological
Research Letters, 81, 530–533, doi: 10.1785/gssrl.81.3.530.

Equinor ASA, 2022, segyio [software], https://github.com/equinor/segyio,
accessed 21 February 2023.

Gibbons, S. J., and F. Ringdal, 2006, The detection of low magnitude seis-
mic events using array-based waveform correlation: Geophysical Journal
International, 165, 149–166, doi: 10.1111/j.1365-246X.2006.02865.x.

Goldstein, P., D. Dodge, M. Firpo, L. Minner, W. Lee, H. Kanamori, P. Jen-
nings, and C. Kisslinger, 2003, SAC2000: Signal processing and analysis
tools for seismologists and engineers, The IASPEI International hand-
book of earthquake and engineering seismology: Incorporated Research
Institutions for Seismology (IRIS) 81, 1613–1620.

Goldstein, P., and A. Snoke, 2005, SAC availability for the IRIS community:
Incorporated Institutions for Seismology Data Management Center Elec-
tronic Newsletter, 7.

Habermann, T., 2015, HDF earth science program: The HDF Group.
Harris, C. R., K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D.
Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus,
S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Rio, M.
Wiebe, P. Peterson, P. Gerard-Marchant, K. Sheppard, T. Reddy, W. Wec-
kesser, H. Abbasi, C. Gohlke, and T. E. Oliphant, 2020, Array program-
ming with NumPy: Nature, 585, 357–362, doi: 10.1038/s41586-020-
2649-2.

Hess, D., S. Azevedo, N. Falco, and B. C. Beaudoin, 2017, PH5: HDF5
based format for integrating and archiving seismic data: AGU Fall Meet-
ing Abstracts, IN42B-03.

Krischer, L., J. Smith, W. Lei, M. Lefebvre, Y. Ruan, E. S. de Andrade, N.
Pod-horszki, E. Bozdag, and J. Tromp, 2016, An adaptable seismic data
format: Geophysical Journal International, 207, 1003–1011, doi: 10.1093/
gji/ggw319.

Krischer, L., J. A. Smith, and J. Tromp, 2015, SEIS-PROV: Practical prov-
enance for seismological data: AGU Fall Meeting Abstracts, S53A-2768.

Li, Z., and M. van der Baan, 2021, Reverse-time imaging of DAS micro-
seismic data: First International Meeting for Applied Geoscience Energy,
Expanded Abstracts, 392–396, doi: 10.1190/segam2021-3593211.1.

Lin, F.-C., D. Li, R. W. Clayton, and D. Hollis, 2013, High-resolution 3D
shallow crustal structure in Long Beach, California: Application of am-
bient noise tomography on a dense seismic array: Geophysics, 78, no. 4,
Q45–Q56, doi: 10.1190/geo2012-0453.1.

HDF5eis data schema F37

D
ow

nl
oa

de
d

04
/1

1/
23

 to
 1

8.
10

.8
6.

10
6.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
S

E
G

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/p
ag

e/
po

lic
ie

s/
te

rm
s

D
O

I:1
0.

11
90

/g
eo

20
22

-0
44

8.
1

http://dx.doi.org/10.1190/1.1443626
http://dx.doi.org/10.1190/1.1443626
http://dx.doi.org/10.1190/1.1443626
http://dx.doi.org/10.1029/2021RG000769
http://dx.doi.org/10.1029/2021RG000769
http://dx.doi.org/10.1190/1.1440530
http://dx.doi.org/10.1190/1.1440530
http://dx.doi.org/10.1190/1.1440530
http://dx.doi.org/10.1093/gji/ggv142
http://dx.doi.org/10.1093/gji/ggv142
http://dx.doi.org/10.1093/gji/ggv142
http://dx.doi.org/10.1785/gssrl.81.3.530
http://dx.doi.org/10.1785/gssrl.81.3.530
http://dx.doi.org/10.1785/gssrl.81.3.530
http://dx.doi.org/10.1785/gssrl.81.3.530
http://dx.doi.org/10.1785/gssrl.81.3.530
https://github.com/equinor/segyio
https://github.com/equinor/segyio
http://dx.doi.org/10.1111/j.1365-246X.2006.02865.x
http://dx.doi.org/10.1111/j.1365-246X.2006.02865.x
http://dx.doi.org/10.1111/j.1365-246X.2006.02865.x
http://dx.doi.org/10.1111/j.1365-246X.2006.02865.x
http://dx.doi.org/10.1111/j.1365-246X.2006.02865.x
http://dx.doi.org/10.1111/j.1365-246X.2006.02865.x
http://dx.doi.org/10.1038/s41586-020-2649-2
http://dx.doi.org/10.1038/s41586-020-2649-2
http://dx.doi.org/10.1038/s41586-020-2649-2
http://dx.doi.org/10.1093/gji/ggw319
http://dx.doi.org/10.1093/gji/ggw319
http://dx.doi.org/10.1093/gji/ggw319
http://dx.doi.org/10.1190/segam2021-3593211.1
http://dx.doi.org/10.1190/segam2021-3593211.1
http://dx.doi.org/10.1190/segam2021-3593211.1
http://dx.doi.org/10.1190/geo2012-0453.1
http://dx.doi.org/10.1190/geo2012-0453.1
http://dx.doi.org/10.1190/geo2012-0453.1

Lindsey, N. J., T. C. Dawe, and J. B. Ajo-Franklin, 2019, Illuminating sea-
floor faults and ocean dynamics with dark fiber distributed acoustic sens-
ing: Science, 366, 1103–1107, doi: 10.1126/science.aay5881.

McKinney, W., 2010, Data structures for statistical computing in Python:
Proceedings of the 9th Python in Science Conference, 56–61.

Mousavi, S. M., W. L. Ellsworth, W. Zhu, L. Y. Chuang, and G. C. Beroza,
2020, Earthquake transformer — An attentive deep-learning model for
simultaneous earthquake detection and phase picking: Nature Communi-
cations, 11, 3952, doi: 10.1038/s41467-020-17591-w.

Papadopoulos, S., K. Datta, S. Madden, and T. Mattson, 2016, The TileDB
array data storage manager: Proceedings of the VLDB Endowment, 10,
349–360, doi: 10.14778/3025111.3025117.

Ross, Z. E., M.-A. Meier, E. Hauksson, and T. H. Heaton, 2018, Generalized
seismic phase detection with deep learning: Bulletin of the Seismological
Society of America, 108, 2894–2901, doi: 10.1785/0120180080.

Ross, Z. E., D. T. Trugman, E. Hauksson, and P. M. Shearer, 2019, Search-
ing for hidden earthquakes in Southern California: Science, 364, 767–
771, doi: 10.1126/science.aaw6888.

Schorlemmer, D., F. Euchner, P. Kastli, and S. Joachim, 2011, QuakeML:
Status of the XML-based seismological data exchange format: Annals of
Geophysics, 54, 59–65, doi: 10.4401/ag-4874.

Shelly, D. R., 2020, A high-resolution seismic catalog for the initial 2019
Ridgecrest earthquake sequence: Foreshocks, aftershocks, and faulting
complexity: Seismological Research Letters, 91, 1971–1978, doi: 10
.1785/0220190309.

Shelly, D. R., W. L. Ellsworth, and D. P. Hill, 2016, Fluid-faulting evolution
in high definition: Connecting fault structure and frequency-magnitude
variations during the 2014 Long Valley Caldera, California, earthquake
swarm: Journal of Geophysical Research: Solid Earth, 121, 1776–
1795, doi: 10.1002/2015JB012719.

The HDF Group, 1997–2022, Hierarchical Data Format, version 5, https://
www.hdfgroup.org/HDF5/, accessed 21 February 2023.

Unidata, 2016, Network Common Data Form (netCDF): Unidata.
Wapenaar, K., D. Draganov, R. Snieder, X. Campman, and A. Verdel,

2010a, Tutorial on seismic interferometry: Part 1 — Basic principles
and applications: Geophysics, 75, no. 5, 75A195–75A209, doi: 10
.1190/1.3457445.

Wapenaar, K., E. Slob, R. Snieder, and A. Curtis, 2010b, Tutorial on seismic
interferometry: Part 2— Underlying theory and new advances: Geophys-
ics, 75, no. 5, 75A211–75A227, doi: 10.1190/1.3463440.

Zhu, W., and G. C. Beroza, 2018, PhaseNet: A deep-neural-network-based
seismic arrival time picking method: Geophysical Journal International,
216, 261–273, doi: 10.1093/gji/ggy423.

Hilary Chang received a B.S. (2009) in
finance from National Taiwan University
and a B.S. (2019) in earth sciences from
the Memorial University of Newfound-
land. She is a Ph.D. candidate at the Mas-
sachusetts Institute of Technology. She is
a member of AGU and SEG. Her research
interests include near-surface site effects,
ambient noise tomography, temporal

monitoring, and DAS.

Biographies and photographs of the other authors are not
available.

F38 White et al.

D
ow

nl
oa

de
d

04
/1

1/
23

 to
 1

8.
10

.8
6.

10
6.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
S

E
G

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/p
ag

e/
po

lic
ie

s/
te

rm
s

D
O

I:1
0.

11
90

/g
eo

20
22

-0
44

8.
1

http://dx.doi.org/10.1126/science.aay5881
http://dx.doi.org/10.1126/science.aay5881
http://dx.doi.org/10.1126/science.aay5881
http://dx.doi.org/10.1038/s41467-020-17591-w
http://dx.doi.org/10.1038/s41467-020-17591-w
http://dx.doi.org/10.14778/3025111.3025117
http://dx.doi.org/10.14778/3025111.3025117
http://dx.doi.org/10.14778/3025111.3025117
http://dx.doi.org/10.1785/0120180080
http://dx.doi.org/10.1785/0120180080
http://dx.doi.org/10.1126/science.aaw6888
http://dx.doi.org/10.1126/science.aaw6888
http://dx.doi.org/10.1126/science.aaw6888
http://dx.doi.org/10.4401/ag-4874
http://dx.doi.org/10.4401/ag-4874
http://dx.doi.org/10.1785/0220190309
http://dx.doi.org/10.1785/0220190309
http://dx.doi.org/10.1002/2015JB012719
http://dx.doi.org/10.1002/2015JB012719
https://www.hdfgroup.org/
https://www.hdfgroup.org/
https://www.hdfgroup.org/
https://www.hdfgroup.org/
HDF5/
http://dx.doi.org/10.1190/1.3457445
http://dx.doi.org/10.1190/1.3457445
http://dx.doi.org/10.1190/1.3457445
http://dx.doi.org/10.1190/1.3463440
http://dx.doi.org/10.1190/1.3463440
http://dx.doi.org/10.1190/1.3463440
http://dx.doi.org/10.1093/gji/ggy423
http://dx.doi.org/10.1093/gji/ggy423

