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Characterizing Microearthquakes Induced by
Hydraulic Fracturing with Hybrid Borehole DAS

and Three-Component Geophone Data
Zhen-dong Zhang, Malcolm C. A. White, Tong Bai, Hongrui Qiu and Nori Nakata

Abstract—Fluids injected during hydraulic fracturing (frack-
ing) in unconventional shale oil and gas reservoirs, geothermal
system enhancement, wastewater disposal, and carbon capture
and storage can induce microearthquakes. The spatiotemporal
distribution of induced earthquakes is often used to trace the
growth of fractures in target layers and guides production. We
analyze microseismicity behavior induced by fracking in the
Montney Formation, one of the largest unconventional oil and
gas reservoirs in North America. An optical fiber deployed in
a horizontal well provides extensive spatial sampling and data
coverage for microseismic imaging. We design median and F-
k filters to predict instrumental and random noise and further
suppress them by adaptive noise subtraction. An elliptical vertical
transverse isotropic (VTI) velocity model is derived from the
Backus-averaged well-log sonic data and is modified to match
the microseismic wavefronts by a grid search. We image 41
previously cataloged microearthquakes recorded by DAS using
Geometric-mean Reverse Time Migration. We find that the
fiber geometry’s lack of 2D/3D variations increases the non-
uniqueness of the image point location, and the P-wave particle
motions derived from 3C geophones data can effectively eliminate
the location ambiguity. The spatiotemporal distribution of our
updated locations agrees with the fracking schedule. Predicted
P- and S-wave traveltimes from the updated locations also
match with the observed waveforms. Analyzing data sensitivity
to source locations confirms the potential limitations imposed
on source imaging by the geometry of borehole observations
and shows that relocation accuracy is directionally dependent.
We also investigate the feasibility of estimating source focal
mechanisms using realistic DAS and geophone observations.
Our study provides guidance for characterizing microearthquake
sources and optimizing observation geometry for unconventional
reservoirs.

Index Terms—DAS, microearthquake, focal mechanism, elas-
tic, VTI.

I. INTRODUCTION

M ICROEARTHQUAKES that are imperceptible to hu-
mans without specialized sensors—are routinely gen-

erated during hydraulic fracturing [1], [2]. They are gener-
ally localized at pre-existing fault surfaces or are created
within volumes of newly fractured rock. Imaging, or otherwise
characterizing, microseismic sources can thus be used to
detect fault slip and monitor activity related to enhancing
subsurface resource production [3]–[5]. Characterizing micro-
seismic sources is a typical geophysical inverse problem in
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which an optimal set of model parameters—including, for
example, the focal mechanism, the origin time, and the source
location—is sought by minimizing the discrepancy between
observed and predicted data [6]–[8]. Recovering the entire
set of source-related model parameters requires exhaustive
observational coverage, which is prohibitively expensive in
practice. Indeed, different components of seismic waveform
data have variable sensitivities to parameters that are used to
characterize the source [9]. The origin time and source location
directly influence the arrival time of seismic waves, while
the focal mechanism mainly affects the dynamic information
of the recorded waveform data. As a remedy, simplified
earthquake models with reduced numbers of parameters and
inversion algorithms that are robust against incomplete data are
frequently used in particular applications. Notably, there are
inherent trade-offs between inverted seismic sources and earth
model parameters [10], [11]. Such trade-offs, however, can be
effectively mitigated by a dense spatial sampling of the seismic
wavefield, such as those recorded by fiber optic cables using
distributed acoustic sensing (DAS) technology. As a result,
DAS data are preferable over relatively sparse geophone data
for locating microearthquakes [12]–[15]. However, the single-
component DAS acquisition can only weakly constrain source
locations perpendicular to the fiber or source focal mechanism.
The three-component (3C) geophone data, although sparsely
distributed, can provide sufficient additional constraints for
estimating source locations and focal mechanisms.

Fractures generated during fracking operations are asso-
ciated with microearthquakes, and accurately locating these
microearthquakes is paramount to determining the geometry
of growing fracture networks. Because inversion algorithms
for determining microearthquake locations mainly rely on
matching the kinematics of seismic waves (i.e., ray paths and
travel times), estimating such parameters is easier and more
robust than dynamic parameters (e.g., the focal mechanism
and source-time function). Indeed seismic imaging methods,
which are adjoint approximations to the formal inverse, have
been widely used to locate microearthquakes [16]–[23]. Time-
reversal imaging [16] locates microearthquakes by extracting
the zero-lag correlation of back-propagated receiver wave-
fields. Time-reversal imaging images the radiation pattern of
the energy source rather than its location and image quality
is thus highly dependent on the acquisition geometry. Incom-
plete and noisy observations can cause smearing in obtained
images; however, this smearing can be effectively suppressed
using the geometric-mean imaging condition [18], although
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this entails an increase in the computational cost compared
with other imaging conditions. Emerging machine learning
approaches [23] create a direct mapping between seismic data
and the source location and are thus free of source smearing.
Among these methods, wave-equation-based imaging requires
less human effort and is more tolerant of random noise.
However, ray-based imaging is generally less computation-
ally demanding than wave-equation-based imaging. On the
other hand, owing to the more complete physical model
considered, wave-equation-based imaging methods utilize the
full waveform information and can potentially provide better
resolution than ray-based imaging. Machine learning methods
may learn physics from the provided training data that incorpo-
rates both kinematic (ray-based) and dynamic (wave-equation-
based) constraints on the imaging process. In this sense, they
can be regarded as a unified framework combining ray-based
and wave-equation-based methods. Model training, however, is
usually time-consuming and sometimes insufficient for general
use, but, once trained, source locations can be obtained nearly
instantaneously. Notably, for all these imaging methods, the
image quality highly depends on the accuracy of the velocity
model and input data. It is required that the velocity used for
migration should be able to reconstruct the wave-path of the
injecting wavefield [24].

The source focal mechanism is secondary to monitoring
fracture growth but can effectively indicate the local, in-situ
stress field. To invert the focal mechanism, we usually need
to match the predicted and observed waveforms in a defined
error norm [25]–[27]. The exact matching of the seismic
waveforms is always challenging because seismic amplitudes
can be affected by many factors other than the source itself
[28]. In practice, seismic waves are carefully selected when
inverting for focal mechanisms [25]. With a sufficiently accu-
rate velocity model and a complete coverage of observations,
we presumably can use an adjoint solution (the first iteration)
to approximate the formal inversion (pp.199 in [29]). The
subsequent iterations in practice may not significantly improve
the focal mechanism estimation from the first iteration (e.g.,
Figure 6 in [26]).

Fiber co-located, 3C seismic sensors and DAS fibers provide
an effective acquisition paradigm for recording sufficient dy-
namic information in the target area. Complementary subsets
of fiber and 3C data can be selected to maximize sensitivity
to the particular source parameter being inverted. Sparsely
distributed borehole sensors previously posed challenges for
location estimation in general, but with DAS emerging as a
cost-effective, spatially dense acquisition system, the lack of
data coverage is no longer a severe limitation for dynamic
microseismic imaging [30]. Owing to its unparalleled dense
spatial sampling and affordability, DAS has been used to solve
many different geophysical problems. For example, monitoring
earthquakes [31], characterizing microseismicity [32], [33],
imaging the near-surface [34], mapping urban seismic hazards
[35], and monitoring boreholes [15], [36], [37]. DAS, however,
measures axial strain (or strain rate) along the fiber and thus
has an instrument response that is dependent on the incidence
angle of incident energy [38], [39]. Converting DAS mea-
surements to ready-to-use units of particle motion is an open

research topic [40]. DAS data also have different noise patterns
from geophone recordings. Several denoising strategies for
DAS data have been proposed [40]–[43]; however, relocat-
ing microearthquakes imposes minimal requirements on DAS
data processing. Constructively stacking seismic wavefields in
the imaging process can be achieved with coherent waves,
regardless of their units. Thus, we emphasize improving the
coherency of waveform traces in data processing and ignoring
their physical units for microseismic relocation. 3C geophones
record more complete dynamic information of seismic waves
emitted from the microearthquakes, and thus are more suitable
for estimating source focal mechanisms. With a known source
location estimated from the joint DAS and 3C geophone data
imaging, the focal mechanism estimation from the 3C data
also becomes more precise.

In this paper, we estimate the source location and focal
mechanism using the DAS and geophone data jointly, in a two-
step sequence. Specifically, we first attenuate the instrumental
noise using a de-median filter along the spatial dimension. We
then predict noise in the frequency-wavenumber (F-k) domain
and apply an adaptive noise subtraction. We demonstrate
how to build anisotropic velocity models from well-log sonic
data and seismic wavefronts. We briefly review the elastic
Geometric-mean Reverse Time Migration methodology and
present a modified impedance-kernel imaging condition. A
real data set with 41 cataloged events is used to verify
the effectiveness and accuracy of the proposed relocation
algorithm. We evaluate relocation accuracy through data sen-
sitivity analysis and comparison to the recorded waveform
data. Finally, we discuss the feasibility of estimating focal
mechanisms using 3C geophone data and conclude. To our
best knowledge, the novelty of the paper is summarized as
1) a new imaging scheme using waveform information for
locating low-magnitude events, 2) proposed novel time-domain
processing algorithms for denoising, and 3) DAS and 3C
geophone data are jointly used for microearthquake relocation
and focal mechanism inversion.

II. STUDY SITE

The studied reservoir is located in the Montney Formation
of the Western Canadian Sedimentary Basin (Figure 1a), which
accounts for about half of the gas supply from Canadian
wells [44]. The low permeability of shales in the Montney
formation necessitates horizontal drilling and extensive frack-
ing to generate economically viable fluid flow [45], [46]. To
this end, four horizontal wells were drilled with 200 m lateral
separation in the reservoir [47], and a single fiber optic cable
and 24 three-component (3C) geophone sensors were installed
in well C (Figure 1b). Zipper fracking was first carried out
between wells A and B (the two outermost wells), followed
by wells C and D (the two innermost wells; not shown in
Figure 1b). In this study, we analyze DAS data extracted for 41
time periods from a 6-hour continuous recording of fracking
operations in wells A and B. The dense spatial sampling of
the DAS data benefits the relocation of microearthquakes, the
traces of which indicate preferred fracture growth directions
and thus guide production.
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Fig. 1. Location of the study site. The Montney Formation is located in western Canada (a) and is one of the largest unconventional oil and deposition
in North America. Hydraulic fracking is required to create flow paths through the ultra-low permeability rocks. Three horizontal wells were piloted to the
reservoir layer (b). A DAS acquisition line (color-coded with six subgroups) is deployed in well C, co-located with 24 3C sensors (plotted in every 3 traces).
Two fracking stages in wells A and B are analyzed in this study.

III. DATA PROCESSING

Although DAS acquisition systems offer dense spatial sam-
pling at a low cost, they suffer from certain drawbacks when
compared with conventional 3C seismic sensors. One such
drawback is the azimuth-dependent sensitivity of DAS, which
is determined by the nature of optical fibers. Another drawback
is the relatively low coherence at short wavelengths character-
istic of tiny events and waveform clipping for large events [40],
[48]. Several data processing strategies have been proposed
to enhance the signal-to-noise ratio (SNR) of DAS data and
convert the measured strain (or strain rate) to units of particle
motion (i.e., particle displacement and its time derivatives),
which are more familiar to most seismologists [40], [42],
[49]. We identify two types of noise in our borehole DAS
recordings: a) random noise and b) instrumental noise (Figure
2a). Random noise are supposed to be suppressed by sufficient
stacking in wavefield-based imaging. Instrumental noise in our
DAS data manifests primarily as vertical and horizontal stripes
(i.e., signals with infinite and vanishing slowness, respectively)
in a common shot gather (CSG), which may degrade the image
quality. To mitigate such non-seismic signals, we design an F-k
filter to suppress coherent noise with non-physical slowness
(Figure 2b). Our F-k filter, however, has the undesirable side
effect of distorting the target signals (Figure 2b). On the other
hand, we find that the horizontal stripes can be removed by
simply applying a de-median filter in the horizontal/spatial
direction (Figure 2c). Thus, after applying the de-median filter,
we use the F-k-filtered data as template signals and derive a
matching filter to further separate the signal and the remaining
noise by solving a minimization problem:

min ||do(t)− f(t) ∗ dp(t)||2 + ϵR(f(t)), (1)

where do(t) and dp(t) denote the de-median and F-k-filtered
data, respectively, f(t) is the desired matching filter that
minimizes the data difference, and R(f(t)) is an L1-norm

regularization term weighted by a scalar ϵ to prevent over-
fitting. We solve this minimization problem using regularized
non-stationary regression [50].

The signals after denoising are reasonably close to the
raw data with the coherent arrivals being clearer (Figure 2d).
Figure 3 shows the noise component has been removed
during each processing step. The de-median filter primarily
removes the instrument noise, but introduces minor waveform
distortions (Figure 3a) at the same time. The adaptive filter is
designed to further suppress noise and alleviate the distortion
of target microseismic signals (Figure 3b). Noise removed by
applying both the de-median and the adaptive filters are shown
in Figure 3c.

IV. VELOCITY MODELS

Accurate models of seismic velocity in the subsurface
are critical for wavefield-based imaging. Image quality and
resolution are heavily influenced by the accuracy of the
forward and reconstructed wavefields, which themselves are
highly sensitive to errors in the velocity model(s) used for
imaging (i.e., migration velocity). Furthermore, seismic waves
propagate with direction-dependent velocities (i.e., anisotropy;
[51]) in shales. Optimal image quality is often obtained when
velocity models are tailored to the frequency band of interest.
The available well-log sonic data, however, have much higher
frequencies than seismic data. Thin isotropic elastic layers
detected by high-frequency sonic logs cause seismic vertical
transverse isotropy (VTI) observed at lower frequencies [51],
[52]. We use Backus averaging to extract effective-medium
models from well logs [53] for vertical P- and S-wave ve-
locities at frequencies suitable for seismic imaging purposes
(Figure 4).

The first step of Backus averaging is to calculate a moving
average of model parameters,

⟨p⟩k =
1

2h+ 1

k+h∑
i=k−h

pi, (2)
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Fig. 2. Example DAS waveform data. (a) Raw data. (b) Raw data after applying an F-k filtering. (c) Raw data after applying a de-median filter. (d) Further
processed data after applying an adaptive filter. No clipping is applied to the plotting.

Fig. 3. Noise removed by the de-median and the adaptive subtraction filters. (a) Noise removed by the de-median filter (Figure 2a - Figure 2c). (b) Noise
removed by the adaptive subtraction filter (Figure 2c -Figure 2d). (c) Noise removed by the full processing procedure (Figure 2a - Figure 2d).

where pi is the measured model parameter (Vp, Vs, and den-
sity) at depth i from sonic logs, and < p >k is the parameter
averaged over depths corresponding to indices between k− h
and k + h. The length of an averaging window is a fraction
of the minimum dominant wavelength, which is given by
2h+1 = Vmin/(Nfp). A typical value for N is 3 for practical
use [52]. fp is the dominant frequency of the passing seismic
waves.

Representing variables as in [54], a recipe for calculating

stiffness parameters from averaged properties of the elastic
layers is given by [53]:

A = 4⟨µ(λ+µ)
λ+2µ ⟩+ ⟨ 1

λ+2µ ⟩
−1⟨ λ

λ+2µ ⟩
2,

C = ⟨ 1
λ+2µ ⟩

−1,

F = ⟨ 1
λ+2µ ⟩

−1⟨ λ
λ+2µ ⟩,

L = ⟨ 1µ ⟩
−1,

M = ⟨µ⟩.

(3)

Note that ⟨·⟩ is the moving averaging mentioned in Equation
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Fig. 4. Vertical P- and S-wave velocities from well-log sonic data and the
Backus averaging. The depth was measured below the sea level (S/S depth).
The Backus average upscale well logs to seismic wavelengths.

2. λ and µ are Lamé parameters calculated from sonic logs.
A,C, F, L, and M are notations of Love’s elasticity for
transversely isotropic media.

Most bulk elastic media are weakly anisotropic [55]. The
Thomsen parameterization, which is a combination of two
vertical wave speeds (V p0, V s0) and three dimensionless
parameters (δ, ϵ, γ), gives an intuitive understanding of the
seismic anisotropy in VTI media. It is convenient to convert
the elastic stiffness parameters into Thomsen parameters:

Vp0 =
√

C
⟨ρ⟩ ,

Vs0 =
√

L
⟨ρ⟩ ,

ϵ = A−C
2C ,

δ = (F+L)2−(C−L)2

2C(C−L) ,

γ = M−L
2L .

(4)

Phase velocities in weakly anisotropic media are direction-
ally dependent (e.g., Equation 16 in [55]),

Vp(θ) = Vp0(1 + δ sin2 θ cos2 θ + ϵ sin4 θ),

Vsv (θ) = Vs0

[
1 +

V 2
p0

V 2
s0

(ϵ− δ) sin2 θ cos2 θ

]
,

Vsh(θ) = Vs0(1 + γ sin2 θ),

(5)

where θ is the angle between the wavefront normal and the
vertical axis. δ will dominate most anisotropic effects in nearly
vertical directions (θ ≈ 0).

Based on the depth distribution of microearthquakes and
the directional preference of optical fibers, the vertical and
horizontal fibers dominantly record vertically (SV waves)
and horizontally (SH waves) polarized S-waves, respectively.
An elliptic VTI approximation, which considers the velocity
difference between horizontally and vertically propagating
waves, should be able to fit the traveltime of observed P- and
S-waves. To this end, we use the parameterization in terms
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Fig. 5. Vertical and horizontal P- and S-wave velocities used for imaging.
We observed strong velocity anisotropy in the target layers below 1200 m by
comparing the calculated traveltime with P and S direct arrivals.

of Vp0
, Vs0 , Vph

, and Vsh for source imaging. We calculate
horizontal velocities by applying a scaling factor to the vertical
ones in the target layers (Figure 5). Specifically, we divide the
target reservoir into two layers and adjust the scaling factors
by fitting the wavefront of direct P- and S-wave arrivals from a
microearthquake (marked by the star in Figure 1b) with a well-
constrained source location and relatively large magnitude.
Seismic waves emitted by the perforation shots were not
recorded by the fiber (they were recorded by 3C sensors),
and thus, we are not able to use these data for validation.
The current finding of optimal scaling factors is based on
trials that aim to maximize the accumulated energy along the
predicted traveltime (e.g., shown in Figure 9). The velocity
of layers above the target reservoir is determined similarly.
Compared with the isotropic velocity models, VTI models
reduce discrepancies between predicted and observed arrival
times (Figure 6) because the observed seismic waves propagate
almost horizontally in the reservoir layer. The vertical S-wave
velocity derived from the well log cannot accurately predict the
traveltime of the SH-wave recorded by the horizontal optical
fiber.

V. ELASTIC GEOMETRIC-MEAN REVERSE TIME MIGRATION

In this paper, we use Geometric-mean Reverse Time Migra-
tion (GmRTM; [18]) with the impedance-kernel (also known
as the energy-norm) imaging condition [56], [57] and a
receiver grouping strategy [58], [59] for improving compu-
tational efficiency and image resolution. We use the adjoint
form of the first-order elastic wave equation to extrapolate the
receiver wavefield in the reverse time direction [60], [61]:

(
ρI3 0
0 C−1

)
∂Ψ

∂(−t)
+

(
0 ET

E 0

)
Ψ = −dk, (6)
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where Ψ = (v1, v2, v3, σ1, σ2, σ3, σ4, σ5, σ6)
T is a vector

containing three particle velocities and six stress components,
E denotes the spatial finite-differentiation operator, I3 is a 3-
by-3 identity matrix, C represents the stiffness matrix, and dk

denotes the kth group of recorded data used for reconstructing
the backpropagated wavefield. There are no overlapping traces
in subgroups.

We divide the DAS channels into six groups and back-
propagate the recorded wavefield using a staggered-grid finite-
difference solver to solve the elastic wave equation [62] with
parallel computing strategies applied. The computational cost
is linearly dependent on the number of subgroups and could
be further reduced by using precalculated Green functions
[63]. The optimal grouping strategy seeks a balance between
the coherency of seismic wavefields in each subgroup and
the spatial resolution of the final image [58]. Backpropagated
wavefields from different receiver groups account for scatterers
and constructively interfere at the location of the primary
source. The image voxel with maximum amplitude after
stacking is taken to be the locations of the microearthquakes.

The impedance-kernel imaging condition effectively sup-
presses energy from waves with large opening angles, thereby
mitigating the effects of wide-angle scatterers and edge ar-
tifacts caused by the limited recording aperture, which con-
tributes to the high-resolution images we obtain. Generally,

the impedance-kernel imaging condition is determined by
weighted summation of the zero-lag cross-correlation (i.e.,
dot-product) of forward- and backpropagated displacement
or strain fields [56], [57], [64]. For our imaging condition,
we calculate the weighted summation of dot products of
backpropagated displacement or strain fields (summation of
Equations 14 and 15 in [64]):

SI = −
T∑

t=0

{ρ(x)
n∏

g=1

vg(x, T − t)+ (7)

Cij(x)

n∏
g=1

ϵgij(x, T − t)},

in which SI denotes the source image. vg is the adjoint particle
velocity wavefield of the gth receiver group, ϵgij is element
ij of the adjoint infinitesimal strain tensor, and the Einstein
summation convention over repeated indices is implied. Here
we only consider the same component of the adjoint wavefield
for the six receiver groups (e.g., Figure 1b) and ignore the
cross components between groups.

VI. RELOCATION RESULTS

Using 2440 DAS channels recorded with a 2.04 m receiver
interval and a 7.14 m gauge length, we image 41 events with
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moment magnitudes ranging from -1.4 to 0.3 (as reported by
the vendor), which occurred during a 6-hour recording period.
Arrivals from five of these events are still difficult to identify
in the denoised DAS data; however, they are clearly visible in
recordings from the geophones. To balance the spatial image
resolution and computational expense, we bandpass filter the
data between 15 and 38 Hz and backpropagate the wavefield
in this frequency band. Aside from the huge computational
cost, utilizing high-frequency data also requires a finer velocity
structure model at hand to reproduce multiple scattered waves.

Assuming the microearthquakes as point sources, we stack
the imaged 3D volumes along the Z, Y, and X axes to obtain
X-Y, X-Z, and Y-Z transects, respectively (Figure 7). Here we
show the GmRTM images calculated from original DAS data
(Figure 7a), trace-normalized DAS data (Figure 7b), and 3C
geophone data (Figure 7c). We observe migration imprints due
to the limited migration aperture of raw DAS and geophone
data, as shown in Figures 7a and 7c. Trace-wise l2-norm
normalization effectively enhances the far-offset signals and
thus expands the migration aperture, as shown in Figure 7b.
The optical fiber is oriented in the X-Z plane with mildly
wiggling in the Y direction. Some mirroring artifacts in the
X-Y and Y-Z transects caused by insufficient data coverage in
the Y direction contaminate the images. Mirrored focal points
are symmetric across the DAS line (Y=1166 m), and both yield
first arrival predictions that agree well with the observations.
Small deviations in the trajectory of the DAS fiber from the
X-Z plane (in the Y direction) may result in minor differences
in focusing amplitudes. But the amplitude difference is also
vulnerable to noise and thus is unsuitable for delineating the
actual source location. We use the primary particle motions
derived from the 3C geophone data to eliminate the location
ambiguity in the Y direction. Figures 8a and 8b are the X-
and Y-component waveforms recorded by the 3C geophones
deployed in the horizontal well. Along with the relatively
accurate source location in X, we can estimate the incident
angle of primary waves from their particle motions (Figure
8c). The linearity of the particle motion indicates that the
measured waves are P-waves and the wave propagates in the
same direction as the particle motions. The microearthquake
examined here should be on the same side as the known source
(e.g., in Figure 1a) since it locates at a larger X than the
geophones. Notably, the method assumes that the first arrivals
(marked by red) are direct P-waves and will fail when a
different type of wave arrives earlier.

To verify the accuracy of our final locations, we project the
predicted traveltimes onto the waveform for visual inspection,
and we also compare them to results from cataloged locations
for reference (e.g., Figure 9). Here we show three relocation
examples with variable magnitudes from the catalog. Similar
plots for all 41 events are also available in our shared data
folder. We quantify the location accuracy using the P- to
S-wave energy ratios between the relocation and catalog
locations (R = EGmRTM/ECat.). The P- or S-wave energies
were calculated by integrating trace-normalized waveform
envelopes along the predicted traveltimes from a VTI eikonal
solver. We add trivial origin times (T0) to the predictions to
account for unknown source times. The obtained ratios with

--------------------

--------------------

▼▼▼▼

DAS --
▼Geophone

a

b

c

Fig. 7. X-Y, X-Z, and Y-Z panels of GmRTM images calculated from a)
raw DAS data, b) Trace-normalized DAS data, and c) 3C geophone data for
the back projection. We observe migration imprints from a) and c) due to the
limited migration aperture. All three of these images show mirrored source
images over the acquisition line.

values greater than 1 indicate the new locations, in general,
yield stronger energy focusing than cataloged locations (e.g.,
Figures 9a and 9b). However, energy ratios smaller than 1 do
not necessarily mean an inaccurate relocation result as indi-
cated by Figure 9c, in which case the noise level is high. The
signal-to-noise ratio of DAS data is also positively correlated
with the variation of collected energies using different T0. We
then show the crossplots of energy ratios and energy variations
color-coded with magnitudes measured from geophone data
(Figure 10). Most of the sampled events are within the ±10%
range of P- or S-energy ratios, which indicates that both
the relocation and cataloged events can predict the traveltime
of direct P- and S-waves with similar accuracy. In addition,
the tiny events of variable magnitudes, resolved from the 3C
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Fig. 8. Particle motions of the primary arrivals projected to the X-Y plane. The first two panels show the waveform data recorded by the 3C receivers
deployed in the horizontal well. The last panel shows the calculated particle motions from the waveform segments marked red. The black arrows indicate the
principal eigenvectors of different traces (scaled for visualization).

geophone data, are not separable from the calculated energy
variations using DAS data, which also indicates that DAS
recordings have a higher noise level than the geophone data
in the same condition.

In general, our new locations cluster near the previously cat-
aloged locations (Figure 11) and are centered near the location
of perforations in the X-direction. Relocated microearthquakes
diffuse vertically more than the cataloged locations, yield-
ing greater agreement with recent laboratory observations
that indicate that detectable acoustic-emission events in the
Montney Formation are more diffuse than those observed in
other highly brittle rocks [65]. Because previously cataloged
locations were estimated using sparse borehole geophone
sensors, which have limited aperture in Y and Z directions,
the corresponding coordinates of these locations are relatively
poorly constrained. Thanks to the vertically installed fibers,
our relocated results should have a better depth accuracy than
horizontal. The particle motion of P-waves derived from the
3C geophone data adds additional constraints to locations in
the Y-direction. Furthermore, as shown in Figure 11d, the
relocation distance generally does not strongly depend on the
magnitudes, thanks to the stacking of multiple traces in the
imaging process. Our new location and the cataloged location
can predict the traveltime at similar accuracy as indicated by
Figure 10. However, their spatial locations are significantly
different. We further investigate the spatiotemporal distribution
of relocated and cataloged microearthquakes in Figure 12. Our
relocated earthquakes origin time and location agreed with
the corresponding stage in the fracking schedule (fracking
alternates between wells roughly every four hours). The earlier
cluster occurs near well A, where an early stage of fracking
was performed, and the latter cluster occurs near well B, where
a later stage of fracking was performed (Figure 12a). Note
that the identified microearthquakes shown here may occur
due to earlier fracking stages (marked by void stars). The
cataloged microearthquakes show similar clustering patterns in
space and time. However, spatial locations for two cataloged
events marked by a black oval (Figure 12b) are suspicious.

The joint DAS and geophone data relocation method, as we
proposed here, should constrain the spatial location better since
we use dense observations and more complete physics than
conventional traveltime analysis.

VII. SENSITIVITY OF DATA TO SOURCE LOCATIONS

Data sensitivity analysis provides insight into the uncer-
tainty of new locations. Because energy from direct P- and
S-wave arrivals dominate our GmRTM images, we can ap-
proximate Frechét derivatives of the waveform data by trav-
eltime derivatives with respect to source location coordinates.
Assuming homogeneous velocity structure, the traveltime, T ,
for an event located at x0, y0, z0 (e.g., the star in Figure 1b)
to a receiver at x, y, z is given by

T (x, y, z) =

√
(x− x0)2 + (y − y0)2 + (z − z0)2

v
, (8)

in which v is a constant velocity (set equal to 1 for
simplicity). The traveltime Frechét derivatives are given by

∂T

∂x
= x−x0√

(x−x0)2+(y−y0)2+(z−z0)2
, (9)

∂T

∂y
= y−y0√

(x−x0)2+(y−y0)2+(z−z0)2
, (10)

∂T

∂z
= z−z0√

(x−x0)2+(y−y0)2+(z−z0)2
. (11)

As expected, all DAS channels are sensitive to the variation
in the X-coordinate of the source location, and the vertical
segment of the DAS fiber provides the majority of the con-
straint on the depth coordinate of sources (Figure 13). The
Y-coordinate of source locations is predominantly sensitive
to channels near the source. The depth coordinate is also
sensitive to these channels, although less so, which indicates
that the new locations may have trade-offs in Y and Z
directions if only the near-source data are used for imaging.
The summation of absolute values of Frechét derivatives also
confirms that the X coordinate is the best-constrained, and
the Y coordinate is the most weakly constrained. The Frechét
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a

b

c

Fig. 9. Validation test for the relocation accuracy a) better, b) worse, and c) neutral. Here we show three examples in which the relocation results are a)
better, b) worse, and c) neutral compared with the catalog location. The predicted traveltimes are overlaid with the DAS waveform data. Collected P- and
S-wave energies along those traveltime curves (with variable origin time, T0) provide quantitative measurements of the relocation accuracy. The gray lines
indicate the picked T0 for P- and S-energy ratio calculation. The variation of gather energies within T0 indicates the noise level of the data.

derivatives approximated by numerical derivatives of finite-
frequency seismic waves also indicate a similar result.

VIII. DISCUSSION: SOURCE FOCAL MECHANISM
ESTIMATION

Although our relocation and the original catalog location
yield similar traveltime patterns (e.g., Figures 9 and 10), their
spatial locations can be very different (e.g., Figure 11). The
uncertainty of the original catalog location is high due to the
limited data coverage and the dense DAS acquisition is key
to reducing such location ambiguity. Indeed, the combination

of geophone and DAS data can further improve the accuracy
of the relocation. Geophone data are often sparse in space but
record the dynamic seismic wavefield with 3C measurements
and high precision. DAS data, on the other hand, have dense
spatial sampling but record only strain-related signals which
have an angle-dependent sensitivity to incoming waves. In
short, conventional 3C sensors can record more complete
dynamic information of seismic wavefield than co-located
fibers. Recent research works use co-located geophones and
DAS channels to calibrate the recorded strain or strain rate
from a DAS line [40], [66]. Efforts were also made to use
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a b

Fig. 10. Crossplots of collected energies and their variations (e.g., from Figure 9) color-coded with catalog magnitudes for a) P waves and b) S waves.
Most of the events are within the ±10% range of energy ratios, which indicates that our relocation results have similar accuracy with the catalog in terms
of matching the traveltime of direct P- and S-waves. Tiny events identified from the 3C geophone data are not separable in DAS data (energy variations are
similar), which indicates that DAS recordings have a relatively larger noise level than geophone data for tiny events.

a b d

c

． *Catalog loc. New loc.

Fig. 11. GmRTM relocation migration from the catalog. They are plotted (a) in X-Y, (b) X-Z, and (c) Y-Z panels. The relocation distances for each event
are shown in d). In general, the migration distance in X and Z directions are in a similar level: Both are smaller than the migration distance in Y direction
(perpendicular to the 2D DAS plane).

the recorded strain for microearthquake characterization. For
example, polarity flips in DAS data indicate some components
of the moment tensor [32], [67]. However, practical implemen-
tations of moment tensor inversion using DAS data need to
consider noise level, coupling, and gauge length on a case-by-
case basis [68]. Here, we analyze the feasibility of combining
geophone and DAS data for estimating the centroid-moment
tensor (CMT) from the three-component (3C) geophone data.

With the best estimate of source locations, we can further
estimate the source focal mechanisms using 3C geophone data.
Stated most simply, given a sufficiently accurate earth model
m, seismic data u can be predicted by the momentum equation
for an elastic continuum, which, in general, can be written as

[26]
ρü = ∇ · (c : ∇u)− M · ∇δ(x − xs)S(t), (12)

in which u is the displacement measured at a receiver located
at xs, M is the moment tensor, S is termed the source
time function, and {M,xs, S} is the source model used for
numerical simulations.

Using the adjoint-state method, [26] derived the gradient for
each component of the moment tensor M, which is an adjoint
approximation to the formal inverse problem,

△Mij = −
T∑

t=0

ϵij(xs, T − t)S(T − 2t0 − t)dt, (13)

where ϵij is the adjoint strain tensor recorded at the source
location xs. The adjoint solution cannot accurately estimate
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a b

Fracking

Fracking

DAS

→

★ Perforation shots

19:19:07
→21:52:29

→

well A

well B

Fig. 12. Microseismic locations color-coded with observation time. a) GmRTM relocation and b) catalog location. The fracking was operated in A and B
well alternatively. Arrows with time indicate the starting time of the last fracking in two stages. Void stars indicate perforation shots performed in earlier
stages. The arrow along well A indicates the moving direction of perforation wells. The oval marks two suspicious catalog events in space and time.

the seismic moment M0 but can provide reasonably accurate
estimates for the relative values of the moment tensor.

We propose to use the estimated source location xs from
DAS and 3C geophone data as the first step for source
mechanism estimation. Then we extract the adjoint strain (or
stress) wavefield at the source location by injecting the 3C
geophone data. We use a Gaussian function calculated from
fitting the envelope of the adjoint strain wavefield to approx-
imate the source time function S. The moment tensor can be
approximated by solving Equation 13. The connection between
the adjoint strain tensor and the moment tensor has also been
validated through numerical examples by [69]. We use a set
of synthetic tests to verify the effectiveness and accuracy of
the proposed workflow. We generate the particle-velocity data
using a spectral finite-element solver [70] in four scenarios:
1) A perfect geometry with the source surrounded by 26 3C
receivers. 2) Same with the geometry of geophone data (Figure
1b). 3) Same with (2), but only the data component along the
well tube is available. 4) Same with the geometry of DAS
data. The exact locations are available in the shared data set
(/focal mech/CMT geometry/ ). The wavefield extrapolation is
based on a finite-difference scheme [62] in order to suppress
the inverse crime [71]. We also assume the velocity model
and source location are known in this test. Figure 14 shows

the focal mechanisms of the true and the estimated sources.
The adjoint solution is reasonably close to the exact source in
terms of the focal mechanism. The focal mechanism estimation
seems less influenced by the azimuthal coverage of 3C sensors
comparing Figures 14a and 14b. Single-component sensors,
either sparsely distributed (Figure 14c) or densely distributed
(i.e., DAS; Figure 14d), cannot constrain the focal mechanism
inversion. The 3C geophone data is presumably more help-
ful for source mechanism estimation than the DAS data. A
comprehensive study on the retrieval of moment tensors from
borehole data was also given by [9].

The adjoint solution requires only one backpropagation of
the receiver wavefield. It is the first iteration of moment
tensor inversion by minimizing the waveform differences
between observed and simulated seismic data, thus saving
computational resources. The improvements by incorporating
more iterations are limited in practice since the waveform
amplitudes can be affected by many factors that are ignored
in numerical simulations (as shown in [26]). There are also
trade-offs between velocity and source estimation, which may
degrade the source focal mechanism estimation in practice.
Nevertheless, we have demonstrated sparse 3C geophone data
are preferred over dense single-component DAS data for
source focal mechanism estimation in an ideal case.
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Fig. 13. Data sensitivity to source locations. The red, green, and blue lines show how the traveltime changes due to source location perturbations in X-, Y-,
and Z-directions (e.g., equations 9-10). The dashed line indicates the transition between the horizontal and vertical segments of the DAS fiber. As expected,
the recording data are most sensitive to X locations and least sensitive to the Y-direction. Only the near-offset data are sensitive to Y locations. However,
such near-offset data have similar sensitivities to Y and Z locations, which indicates the potential trade-off between relocated Y and Z locations. The vertical
section of the DAS line helps constrain the depth of relocated sources, relieving the trade-offs between Y and Z.
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Fig. 14. True and estimated source focal mechanisms. a) Estimation from a perfect geometry. The source is surrounded by 26 3C receivers. b) Estimation from
the 3C geophone data. c) Estimation from mono-component geophone data. d) Estimation from single component DAS data. We take the Z- and X-component
data in the vertical and horizontal segments of the well, respectively, to mimic the DAS recording.
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IX. CONCLUSIONS

We demonstrate the feasibility of applying geometric-mean
reverse-time migration to DAS data, the dense spatial sampling
of which significantly benefits wavefield-based imaging. We
enhance the signal-to-noise ratio of microearthquake wave-
fields by adaptively subtracting F-k-filtered data from the raw
data, which avoids distorting the signal waveform caused by
nonlinear filters. We confirm the existence of anisotropy in an
unconventional shale reservoir. An elliptical VTI approxima-
tion provides sufficiently accurate kinematic information for
the GmRTM imaging method used in this study. We quantify
the accuracy of our new locations using the accumulated P-
and S-wave energies along the predicted traveltime curves
and observe that S-waves are the predominant energy source
in the 41 time periods studied. Due to the limited span
of optical fibers, relocated microearthquakes have significant
uncertainties in directions perpendicular to the plane of fibers,
where particle motions derived from 3C geophone data help
remove the relocation ambiguity. We propose a two-step
source inversion approach, which utilizes the dense DAS and
3C geophone data for source location estimation and the 3C
geophone data for focal mechanism estimation.

X. ACKNOWLEDGMENTS

The DAS data and a Matlab script for data visualization
are available at https://doi.org/10.6084/m9.figshare.18390740.
v4. The numerical solver for seismic wavefield extrapola-
tion (SPECFEM3D) is available at https://geodynamics.org/
resources/specfem3dcartesian. The adaptive subtraction can be
found in the open-source software Madagascar (https://www.
ahay.org). We thank Tariq Alkhalifah and Isao Kurosawa for
their helpful discussions. We thank the HPC team at KAUST
for providing guidance on using IBEX and Shaheen clusters.
The computing for this project was partly performed at the OU
Supercomputing Center for Education & Research (OSCER)
at the University of Oklahoma (OU). We are grateful to Japan
Oil, Gas, Metal National Corporation (JOGMEC) for their
support and permission to publish this work. We thank Ovintiv
Canada ULC. and Cutbank Dawson Gas Resources Ltd. for
permission to use the microseismic and well-log data.

REFERENCES

[1] H. Clarke, L. Eisner, P. Styles, and P. Turner, “Felt seismicity associated
with shale gas hydraulic fracturing: The first documented example in
europe,” Geophysical Research Letters, vol. 41, no. 23, pp. 8308–8314,
2014.
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